

The Algebra Inside Your Videogame: Computer Science in Math

Think of a videogame as a sequence of frames, like pages of a flip-book animation. Game elements change

between frames, either on their own or in response to an event (a key-press, a mouse-click, etc). In Bootstrap,

each student develops his or her own game around three such elements: a player (the user’s avatar), a target

(something the player wants) and a danger (something the player must avoid).

Let’s look at a sample game in which the player (a bee), which is trying to hit the target (a balloon). Between

frames the balloon’s y-coordinate changes and the bee’s x-coordinate changes:

Simple algebraic functions describe how the positions of the balloon and bee change between frames:

Students write functions like these (in a programming language) to update the positions of objects, to detect

when their characters have gone off-screen (inequalities in the plane), and to detect when two objects are close

enough to collide (Pythagorean theorem). Students provide these functions and image files for their characters,

while our software handles the complexities of events, polling, etc. Our standard module focuses on functions,

conditionals, and testing: a small set of concepts for both students and teachers. We also offer a follow-on

module that covers loops, data structures, events, and other typical topics for a full introductory programming

course.

Algebra goes beyond just solving for x, and Bootstrap goes beyond just writing code. We also teach students to

document data types and, more importantly, how to test that their functions produce expected answers. Types

and tests help students develop a program step-by-step, switching between concrete and abstract ways of

thinking about functions. Better still, each of these corresponds to a key concept about functions in the

Common Core math standards: Types teach domain and range, while test cases correspond to input/output

tables. In fact, several standards emphasize teaching students how these three representations (in addition to

graphs) talk about the same objects (functions).

Bootstrap naturally (and explicitly) reinforces these concepts by teaching program design, allowing students to

use algebra and programming to solve problems that are concrete, relevant and engaging.

* A ninth unit (“Preparing for Launch”) is used as review. As such, it is not listed here alongside the units that introduce content.

Bootstrap:1 Unit Description Objectives Standards
Videogames and

Coordinate Planes

Students reverse-engineer a simple videogame into a series of coordinates,

and explore Cartesian space. Once they are comfortable with coordinates,

they brainstorm their own games and begin tinkering with the programming

language and the Circles of Evaluation.

Students will be able to identify points on the

Cartesian plane, write simple arithmetic

programs, and correctly solve equations using

Order of Operations.

A-SSE.1.2

N-Q

6.NS.6

6.NS.8

Contracts, Strings and

Images

Students are introduced to a set-mapping representation for functions, in

which the function translates points from a Domain to a Range. Students

generalize their understanding of functions to include Strings and Images.

Students will be able to identify different data

types (Strings, Images, Numbers, etc.), and to

analyze the Domain and Range of a function.

F-IF.1-3

Defining Functions Students define values of various types, as well as linear functions. They are

also introduced to the process for deriving functions from Word Problems

using worked-through examples, called the Design Recipe.

Students will be able to model relationships in

context using linear functions, and interpret a

function’s behavior using Domain and Range.

A-SSE.1-2

F-IF.1-3

7.EE.4.a

F-BF.1-2

The Design Recipe Students continue to practice the Design Recipe by applying it to a diverse

range of Word Problems.

Students will be able to solve word problems

by breaking them down into a series of

structured steps.

8.F.1

F-IF.1-3

F-IF.4-6

Game Animation Students solve Word Problems that describe animation, and define functions

that map character positions in their game from one frame to the next.

Students will be able to apply their knowledge

of linear functions to a real-world problem.

F-LE.5

F-IF.7-9

Boundary Detection Students discover Boolean types and inequalities in the plane, and use them to

create programs that test locations of a character on the screen. They then

solve Word Problems that deal with Boundary-Detection, writing code to

detect when a character has gone offscreen.

Students will be able to express geometric

regions as Cartesian inequalities, and interpret

logical statements involving “and” / “or”.

6.EE.b.5

7.EE.3

8.IF.1,

A-CED.1-4

Piecewise Functions Students use geometry and conditional branching to move their player

characters in response to key-presses. The Word Problem for key-events

describes a function that behaves differently under different sub-domains,

requiring students to learn about Piecewise Functions.

Students will be able to describe the need for

piecewise functions, and identify their behavior

using function notation.

A-SSE.1-2

Collision Detection Students derive, discuss, and prove the Pythagorean theorem, then use this

theorem—in conjunction with Booleans—to detect collisions in their games.

Students will be able to demonstrate a

geometric proof of the Pythagorean Theorem,

and apply it to a real-world problem.

8.G.6

F-IF.1-3

F-IF.4-6

Optional Activities Have students use composition and coordinates to create a collage, or to

build flags for their favorite country. Have them

use randomness and trigonometric functions for more sophisticated motion,

or introduce data structures for more sophisticated games.

These activities offer connections to additional

Geometry, Programming and Trigonometry

concepts.

Various

