Code.org Computer Science Principles

Syllabus and Overview

Overview

Code.org’s Computer Science Principles (CSP) curriculum is a course designed around the AP
Computer Science Principles Framework. It becomes an official AP® course in the 2016-17
school year. For context, it is useful to have familiarized yourself with the CSP framework before
reading this document.

CS Principles is designed to be a full-year, rigorous, but entry-level course for high school
students. Code.org’s CSP curriculum is also written to support teachers new to the discipline
with inquiry-based activities, videos, assessment support, and computing tools that have built-in
tutorials and student pacing guides.

Below is a snapshot of the course. The course contains four core units of study, with a fifth
unit devoted almost exclusively to students working on their AP Performance Task (PT)
projects. Each unit includes a number of lessons that take from one to two class periods to
complete, assuming 50-minute class periods.

Digital .
gital The Internet Programming Data Performance
Information Tasks
17 lessons 20 Lessons 34 Lessons 23 Lessons Student time
~6 weeks ~6 weeks ~8 weeks ~6 weeks ~4 weeks

A timeline showing a typical Sept-May school year is shown to give a rough estimate of pacing.
The month of May is not shown because the AP Exam and submission deadline will typically be
during the first week of May.

Each unit contains at least one practice Performance Task that mimics the style of the
Advanced Placement PTs. These practice PTs are smaller in scope than the real PTs and are
intended to focus on particular elements or skills required to complete the PTs at the end of the
course.

Unit 5 is set aside as time for students to work independently on their PTs to complete them for
submission to the College Board as part of the official assessment for the course. Please note
that the College Board mandates that a certain number of class hours be devoted solely to
student work-time on these Performance Tasks - so we include it in the calendar to make sure
this time is accounted for. However, a teacher may choose to incorporate this work time
throughout the course in a variety of ways.

AP is a trademark registered and/or owned by the College Board, which was not involved in the production of, and
does not endorse, this document.

http://secure-media.collegeboard.org/digitalServices/pdf/ap/ap-computer-science-principles-curriculum-framework.pdf
http://secure-media.collegeboard.org/digitalServices/pdf/ap/ap-computer-science-principles-curriculum-framework.pdf

Code.org Computer Science Principles

Syllabus and Overview

Who Should Take This Course?

There are no formal prerequisites for this course, though the College Board recommends that
students have taken at least Algebra 1. The course requires a significant amount of expository
writing (as well as writing computer code, of course). For students wishing to complete the
requirements of the AP Exam and Performance Tasks, we recommend they be in 10th grade or
above.

Who Should Teach This Course?

The curriculum is designed so that a teacher who is new to teaching this material has adequate
support and preparation - especially for those who go through Code.org’s professional
development program. A teacher who is motivated to teach a course like this, but who has
limited technical or formal computer science experience should be able to be successful. We
strongly recommend that the teacher have a reasonable level of comfort using computers (using
the web, email, downloading and saving files, basic troubleshooting, etc.) and at least some
experience with computer programming obtained through self-instruction, an online course, or
other formal computer science training or coursework.

Technical Requirements

The course requires a 1:1 computer lab or setup such that each student in the class has access
to an internet-connected computer every day in class. Each computer must have a modern web
browser installed. All of the course tools and resources (lesson plans, teacher dashboard,
videos, student tools, programming environment, etc.) are online and accessible through a web
browser. While the course features many “unplugged” activities away from the computer, daily
access to a computer is essential for every student. It is not required that students have access
to computers at home, but because almost all of the materials are online, students with access
to computers outside of class and at home will find it more convenient and easier to keep up
with the pace of the lessons.

Resources & Materials
The Code.org CSP curriculum includes almost all resources teachers need to teach the course
including:
e Instructional guides for every lesson
Formative and summative assessments, exemplars, rubrics, and teacher dashboard
Student videos - including tutorials, instructional and inspirational videos
Teacher videos - including lesson supports and pedagogical tips and tricks
Widgets and simulators for exploring individual computing concepts
App Lab - Code.org’s JavaScript programming environment for making apps

A few lessons call for typical classroom supplies and manipulatives such as poster paper,
markers, dixie cups, string, playing cards, a handful of Lego blocks, etc. In many cases there
are alternatives to these materials as well. Costs should be low.

Code.org Computer Science Principles

Syllabus and Overview

Suggested Text:

Blown to Bits http://www.bitsbook.com/

This course does not require or follow a textbook. Blown to Bits is a book that can
be accessed online free of cost. Many of its chapters are excellent supplemental
reading for our course, especially for material in Units 1 and 2. We refer to
chapters as supplemental reading in lesson plans as appropriate.

Addressing Diversity, Equity, and Broadening Participation in the Curriculum
Broadening participation and engaging diverse learners is a central goal of this course. To this
end, we have worked to provide examples and activities that are culturally relevant and topical
enough for students to connect back to their interests. Activities are designed and structured in
such a way that students with diverse learning needs have space to find their voice and to
express their thoughts and opinions. The work of providing an accessible classroom doesn't
stop with curriculum-- the classroom environment and teaching practice must also be structured
such that all learners can access and engage with the material at a level that doesn’t advantage
a few at the expense of others.

Equitable teaching practices are inextricably linked and woven into the design and structure of
our lessons, and in some cases the reason for their existence. Broadening student participation
in computer science is a national goal, and effectively a social justice issue. Fancy tools and
motivational marketing messages only get you so far. We believe that the real key to attracting
students to computer science and then sustaining that growth has as much to do with the
teacher in the classroom as it does with anything else. The real “access” students need to
computing is an opportunity to legitimately and meaningfully participate in every lesson
regardless of the student’s background coming into the course.

As such the start of this CSP course purposefully addresses material that is fundamental to
computing but with which many students, even those with computers at home or who have done
some programming, are unfamiliar. This levels the playing field for participation and
engagement right from the beginning of the course. We seek to establish classrooms in which at
the outset every student, regardless of background, has a legitimate stake in the proceedings.

http://www.bitsbook.com/

Code.org Computer Science Principles

Syllabus and Overview

Curriculum Overview

The Internet and Innovation provide a narrative arc for the course, a thread connecting all of the
units. The course starts with learning about what is involved in sending a single bit of
information from one place to another, and ends with students developing small applications of
their own design that live on the web.

Unit Structure

While the layout of units appears to be modular, the units of study are intended to be taught in
the order suggested, and each not only builds students’ skills and knowledge through the
course, but there are many strong connections that can be made across the units. Each unit
contains at least one summative assessment or project that asks students to do things similar to
the official PTs. Sometimes these come mid-unit, sometimes closer to the end.

Lesson Structure and Philosophy

Lessons are designed to be student-centered and to engage students with inquiry-based and
concept-discovery activities. The course does not require the new-to-computing teacher to
lecture or present on computer science topics if they do not want to. Direct instruction is built
into our tools and videos. The teacher plays a large role making choices and ensuring that the
activities, inquiry, and reflection are engaging and appropriate for their students, as well as
assessing student learning.

Most lessons follow a basic routine:
e A warm-up activity to activate prior knowledge and present a thought-provoking problem
e An activity that varies but is typically one of:
o Unplugged concept invention, and problem solving scenarios
o Creating digital artifacts (including programming)
o Research / reflection / presentation
e A wrap-up activity or reflection

Assessment

The AP Assessment consists of a multiple choice exam and two “through-course” assessments
called the AP Performance Tasks (PTs). For context it would be useful to familiarize yourself
with the College Board documents. There are two:

e Explore Performance Task

e Create Performance Task

Summative Assessments

As mentioned previously there are several lessons in the curriculum that outline projects that
are very similar to the AP PTs. We call them Practice PTs. Each unit contains at least one
Practice PT and some have two. It is highly recommended that the teacher use these in order to
help students prepare for the actual Performance Tasks.

http://apcsprinciples.org/wp-content/uploads/2015/03/explore-pt-march-2015.pdf
http://apcsprinciples.org/wp-content/uploads/2015/03/create-pt-march-2015.pdf

Code.org Computer Science Principles

Syllabus and Overview

Formative Assessments:
The curriculum provides teachers many opportunities for formative assessment (such as checks
for understanding). These include, but are not limited to:

Assessments in Code Studio

e The Code Studio environment which serves as the central location for students to
access resources for each lesson has built-in assessments related to the lesson. Some
of these are multiple choice or matching questions. Some are free-response text fields
where students may input their answer.

e Code Studio also keeps track of student work from the programming environment, and
other digital tools and widgets

e The teacher may access and view any of these student works through their account

Worksheets and Activity Guides
e Many lessons contain worksheets or activity guides that ask students to write, answer
questions, and respond to prompts (Answer keys provided).
e These can be collected as a form of formative assessment

Rubrics
e Rubrics are provided for the many opportunities for students to share work and/or
present in the class
e Rubrics are provided for written work
e Rubrics for free-form programming assignments are also provided

It is up to the classroom teacher:
e to determine the appropriateness of the assessments for their classrooms
e to decide how to use, or not to use, the assessments for grading purposes. The
curriculum and Code Studio does not provide teachers with a gradebook.

Code.org Computer Science Principles

Syllabus and Overview

Coverage of Computational Thinking Practices (CTP)

As the framework says: computational thinking practices capture important aspects of the work
that computer scientists engage in. These practices are essential to the experience of doing
work in computing. These practices are not something that one covers once and then is done.
Rather they represent higher order thinking skills, behaviors, and habits of mind that need to be
constantly visited, repeatedly honed, and refined over time.

In this curriculum every lesson strives to incorporate multiple computational thinking
practices. In each unit of study students will engage in each CTP multiple times. For reference
here are the computational thinking practices as outlined in the CSP Framework

P1: Connecting Computing

e [dentify impacts of computing.

e Describe connections between people and
computing.

e Explain connections between computing
concepts.

P2: Creating Computational Artifacts

e Create an artifact with a practical, personal, or
societal intent.

e Select appropriate techniques to develop a
computational artifact.

e Use appropriate algorithmic and information
management principles.

P3: Abstracting

e Explain how data, information, or knowledge is
represented for computational use.

e Explain how abstractions are used in
computation or modeling.

e |dentify abstractions.

e Describe modeling in a computational context.

P4: Analyzing Problems and Artifacts

e FEvaluate a proposed solution to a problem.

e Locate and correct errors.

e Explain how an artifact functions.

e Justify appropriateness and correctness of a
solution, model, or artifact.

P5: Communicating

e Explain the meaning of a result in context.

e Describe computation with accurate and
precise language, notations, or visualizations

e Summarize the purpose of a computational
artifact.

P6: Collaborating

e Collaborate with another student in solving a
computational problem.

e Collaborate with another student in producing
an artifact.

e Share the workload by providing individual
contributions to an overall collaborative effort.

e Foster a constructive, collaborative climate by
resolving conflicts and facilitating the
contributions of a team member

e Exchange knowledge and feedback with a
partner or team member.

e Review and revise their work as needed to
create a high-quality artifact.

Code.org Computer Science Principles

Syllabus and Overview

Coverage of the CS Principles Framework

The CS Principles Framework is not intended to be taught in any particular order. Similar to the
6 Computational Thinking Practices, the 7 Big Ideas of CS Principles are not ideas you can
“cover” one at a time. The learning objectives associated with each overlap, intersect, and
reference each other and multiple big ideas. For example, a learning objective listed under the
big idea Abstraction also references Programming: “Develop an abstraction when writing a
program or creating other computational artifacts”.

This curriculum takes the view that the 7 Big Ideas actually represent a body of knowledge in
which topics of study: The Internet, Programming and Data intersect with more general
principles of computing: Creativity, Abstraction, Algorithms and Global Impacts. It is much more
usefully viewed in two dimensions (see below).

m actually addresses items from almost all of the big ideas, but heavily emphasizes items
from the big ideas Abstraction and Creativity. Students invent, solve problems and create
many artifacts in Unit 1 related to the digital representation of information and the implications of
attempting to encode information in ways that computers can process (in binary). See the full
unit descriptions for more information.

For Units 2, 3 and 4, we treat the Big Ideas Internet, Programming, and Data as major topics of
study. We ensure that we cover all aspects of those topics by looking at their intersections with

the other 4 big ideas: Creativity, Abstraction, Algorithms, Global Impact. The chart below shows
the intersections of the big ideas and examples of topics addressed in the curriculum.

Internet Programming Data
Creatvity eriagonmincaen | Makoadsietscone. | ok yow o
Abstraction Internet Protocols Writing fﬁ;o;;dnusres and Visualizing Data
Algorithms Routing, Encryption string manipulation Searching and data mining

image processing

Software can solve some Implications of collection

Global Impact Security, Privacy, Hacking but not all problems and storage of big data

http://secure-media.collegeboard.org/digitalServices/pdf/ap/ap-computer-science-principles-curriculum-framework.pdf

Code.org Computer Science Principles

Syllabus and Overview

Unit Overviews

What follows are more in-depth descriptions of each unit of study which explain the topics
covered and what students will be doing. Each unit also highlights a particular lesson, project or
assignment of interest, explaining what students do and showing which learning objectives
and computational thinking practices that particular assignment addresses.

Unit 1: The Digital Representation of Information

This unit sets the foundation for thinking about the digital (binary) representation of information
and how that affects the world we live in. This unit explores the technical challenges and
questions that arise from the need to represent digital information in computers and transfer it
between people and computational devices. Topics include: the digital representation of
information - numbers, text, images, and communication protocols.

The unit begins with a consideration of what is involved in sending a single bit of information
from one place to another. In the Sending Binary Messages lesson students work with a
partner to devise and build their own bit-sending “machines.” Complexity increases as students
adapt their machines to handle multi-bit messages, and increasingly complex information. For
encoding information that can be sent between devices we use an Internet Simulator that allows
students to develop and test binary encodings and communication protocols of their own
invention.

9 bits per pixel. With 8 bits per pixel you can expres:
fsier to understand.

Image width; 19 —

Image height: 14 o

I- Bits per pixel: 9
Binary: 1) Hexadecimal: =

13
[
09
bidddadddagddddgddadiddsddaridddsgdddgddssiy
FPFFFTEFFEFFEFEY 249 TD329F4 49 TFFFEVIFFFEFTTY
FFFFFFEFEFFDI4924324BDIEOFAMABEDFFFFALBFEY
FO2SFFFFFFFFES2FFFFFFFFFEFAABDIEI 4960BFFF
924924924BFFFFFFFFDSFATATDL25E9F4FAS 25D
ave Image Actualsize: | 2492492492492 FFFEFPEFFEAGB4 IA1D0EET4]
¢ the file format structure for the image: | JA149249249243TFFEFFEFPFFFPFFEFEAASZA}
FFFFFFEFFFFFEFFFFTFEFTTC

Code.org Computer Science Principles

Syllabus and Overview

Unit 1 Lessons

01 - Personal Innovations Project: Encode a Complex Thing
02 - Sending Binary Messages Students invent a binary encoding (file format) for a
03 - Sending Complex Messages piece of information that they find personally

meaningful. How might you encode smell? or a
soccer game? or the brush strokes of a real
painting? Students come up with their own creation

04 - Sending Binary Messages with the
Internet Simulator

05 - Sending Bits in the Real World and present their work in a format similar to that of a
06 - Number Systems - Circles, Triangles, Performance Task. While the project is done
Squares individually the lesson helps students through an
07 - Binary Numbers iterative feedback process with a partner. This

08 - Sending Numbers assignment emphasizes the writing process, and

09 - Encoding Numbers in the Real World giving and incorporating feedback from peers.

10 - Encoding and Sending Text Learning Objectives Addressed:

11 - Sending Formatted Text Creativity: 1.1.1, 1.2.4

12 - Bytes and File Sizes Abstraction: 2.1.1,2.1.2, 2.2.1

13 - Text Compression Data: 3.2.1, 3.3.1

14 - Encoding B&W Images

15 - Encoding Color Images Computational Thinking Practices Emphasized:

16 - Lossy Compression and File Formats ~ P1: Connecting Computing
P3: Abstracting

17 - Practice PT - Encode an Experience P5: Communicating
P6: Collaborating

Code.org Computer Science Principles

Syllabus and Overview

Unit 2: The Internet

This unit largely explores the structure and design of the Internet and the implications of those
design decisions including the reliability of network communication, the security of data, and
personal privacy. Topics include the Internet Protocol (IP), DNS, TCP/IP, cryptography and
other security and hacking concerns. Students are introduced to algorithms formally in this unit
by considering shortest path problems for routing. The unit also makes the link between the
existence of computationally hard problems and encryption schemes that are “hard” for
computers to crack.

The unit starts with students being presented with a more robust Internet Simulator that
students will use to solve some of the classic problems of network communication such as
addressing devices, routing traffic, and developing packet switching. Students work together to
invent solutions and protocols to many of the problems that arise. The second half of the unit
asks students to consider how information might be encrypted to ensure privacy and some of
the tradeoffs involved.

Syllabus and Overview

Code.org Computer Science Principles

Unit 2 Lessons

Part 1: How the Internet Works

01 - The Internet is for Everyone

02 - The Need for Addressing

03 - Invent an Addressing Protocol

04 - Routers and Redundancy

05 - Packets and Making a Reliable Internet
06 - Algorithms - Minimum Spanning Tree
07 - Algorithms - Shortest Path Problem
08 - Algorithms - How Routers Learn

09 - The Need for DNS

10 - DNS in the Real World

11 - HTTP and Abstraction

12 - Practice PT- Global Impacts of the
Internet

Part 2: Security, Privacy and Crime

13 - Tell Me a Secret - Encrypting Text

14 - Cracking the Code

15 - Keys and Passwords

16 - Hard Problems - The Traveling Salesperson
Problem

17 - One Way Functions - The WiFi Hotspot
Problem

18 - Asymmetric Keys - Cups and Beans

19 - Public Key Crypto

20 - Practice PT- Security and Hacking in the
Real World

Project: Security and Hacking

This assignment mimics many of the
elements of the Explore Performance Task.
Students will investigate and research an
issue related to internet security or privacy
examine it with a critical eye to demonstrate
a deep understanding of the issue, its
functionality, and its potential impact on
people and society. Students may investigate
such topics as Net Neutrality, cybercrime, or
other legal, political, or societal issues that
stem from the structure and and usage of the
Internet. A key element of the assignment is
communicating and explaining the interplay
between the technology and societal issue.

Learning Objectives Addressed:
Data: 3.3.1

Internet: 6.1.1, 6.2.1, 6.2.2, 6.3.1
Global Impacts: 7.3.1,7.4.1

Computational Thinking Practices
Emphasized:

P1: Connecting Computing

P5: Communicating

Code.org Computer Science Principles

Syllabus and Overview

Unit 3: Programming

This unit introduces students to programming in the JavaScript language and creating small
applications (apps) that live on the web. This introduction places a heavy emphasis on
understanding general principles of computer programming and revealing those things that are
universally applicable to any programming language. Students will program in an online
programming environment called App Lab that has many features, chief among them the ability
to write JavaScript programs with click-and-drag blocks or just typing text - allowing the user to
switch back and forth at will. This should greatly ease the transition to typing text-based
programming languages.

The unit begins with students solving problems with classic turtle-style programming, focusing
on the power of procedural abstraction and personal expression with code. After learning some
basics of programming with the turtle, we transition to more event-driven apps, gradually
blending in common user interface objects like buttons and text inputs, images and so on. Over
the unit students create 4 apps of some significance - each emphasizing a different aspect of
programming. Students will continue programming in the next unit of study, but this unit
provides an introduction to programming from the ground up, almost literally.

Syllabus and Overview

Code.org Computer Science Principles

Unit 3 Lessons

Part 1: Turtle Programming and Procedural
Abstraction

01 - The Need For Programming Languages
02 - Using Simple Commands

03 - Creating Functions

04 - Functions and Top-Down Design

05 - APIs and Function Parameters

06 - Creating functions with Parameters

07 - Looping and Random Numbers

Practice PT:

08a - Digital Scene Design Part 1: Plan
08b - Digital Scene Design Part 2: Code
08c - Digital Scene Design Part 3: Reflect

Part 2: Event Driven Programming

09 - Events Unplugged

10 - Buttons on the Screen

11 - Unfortunate Events

12 - Beyond Buttons Toward Apps

13 - Cookie Clicker

14 - Improving the Clicker Game

15 - Controlling Memory: variable basics

16 - Clicker Variable Basics: scope and arithmetic
17 - Conditional Basics

18 - More Variables: types

19 - Permanent Data Storage and Clicker Game

Part 3: String Processing

20 - Natural Language Processing and Chat Bots
21 - Chained Conditionals

22 - Compound Conditionals

23 - Strings and Substrings

24 - Chatbot Challenge

Part 4: Loops and Arrays

25 - While Loop Basics

26 - While Loops - Counting Flips

27 - Arrays - Intro

28 - Arrays - Photo Album

29 - Images are Arrays!

30 - Arrays and Loops - Altering Images
31 - Arrays and Loops - Hidden Images

Project: Digital Scene Design

In this project students work with a small team
to create a digital scene with turtle graphics.
They plan the scene together, code the parts
separately and bring them together to make a
whole. An important focus of this project is on
how teams of programmers work together, and
some insight is given into how real engineering
teams do this. Students are asked to reflect on
their experience in a way that is similar to the
Create performance task. In terms of
programming, a heavy emphasis is on writing
functions (procedures) that can be easily
incorporated into others’ code.

Learning Objectives Addressed:
Creativity: 1.1.1,1.2.1,1.2.4, 1.3.1
Abstraction: 2.2.1, 2.2.2
Algorithms: 4.1.1

Programming: 5.1.1, 5.1.3, 5.3.1

Computational Practices Emphasized:
P2: Creating Computational Artifacts

P3: Abstracting

P6: Collaborating

13

Code.org Computer Science Principles

Syllabus and Overview

Unit 4;: Data

In this unit students continue programming and building apps, but now with a heavier focus on
data. Being able to extract knowledge from data is an important aspect of CS Principles and in
this unit students will do that in a number of ways. Students will write programs that generate
data to model or simulate a scenario they wish to investigate. Students will process large lists of
data imported from other sources and also pull data from live data APIs. Students will also more
fully use App Lab’s cloud data storage capabilities to create databases to use with their own

apps.

The unit begins with students designing and running monte carlo-type experiments to
investigate the answer to data-driven questions that can be simulated on the computer with
many trials. Students then write programs that process large lists of data to perform simple
searches or aggregations. The unit concludes with some big data investigations that
encourages students to query a remote API that can return data and artifacts they can use in
their apps.

Syllabus and Overview

Code.org Computer Science Principles

Unit 4 Lessons

Introduction to Big Data

01 - What is Big Data?

02 - APIs and access to large data sets
03 - Structuring data: JSON

Collection & Storage
04 - Usable and/or Useful Data?

05 - Make an app that collects data

06 - Data Persistence: What Happens Online
Stays Online
07 - When storage goes wrong

Security & Privacy

08 - What the internet knows about you

09 - Classroom debate: Privacy vs. Utility

10 - What hackers do when they find databases

11 - Make a data privacy policy for your app

Extraction & Cleaning

12 - Needles and Haystacks - How to do you find
anything in big data?

13 - Indexing/counting/sorting

14 - Import and clean data

15 - What can we extract from our own data?

Analysis & Visualization

16 - Are we seeing the same thing?

17 - Simple analysis through visualization
18 - Important tools for analysis

19. Plan your visualization

Knowledge Discovery

20 - Uses of statistical analysis & Data Mining

21 - Cluster, Outliers, Associations, Regressions,
Classifications

22 - Tools for analysis

Project:
23 - Make visual explanation and analysis

Project: Make a Web App

This unit features a large ongoing project that
students will continually build, edit, and revisit
during the unit. Students will each create an app
of their own design that collects data of some kind
about its users. This app is used as a reference
point to address many real-world issues that arise
with data collection, in both technical and ethical
realms. The student’s app serves as a constant
reminder that anyone can create apps that collect
data, even early learners. With that power comes
the responsibility of understanding the
implications of what you’re doing, and insight into
what others are doing as well. This last project
visits elements of all seven of the Big |Ideas of the
Framework.

Learning Objectives Addressed:
Creativity: 1.1.1,1.2.1,1.2.2,1.24
Abstraction: 2.1.1,2.2.2

Data: 3.1.1, 3.1.2, 3.1.3, 3.2.1, 3.3.1
Algorithms: 4.1.1,4.1.2,4.2.4
Programming: 5.1.1, 5.2.1, 5.3.1, 5.4.1, 5.5.1
Internet: 6.3.1

Global Impacts: 7.3.1, 7.4.1

Computational Thinking Practices
Emphasized:

P1: Connecting Computing

P2: Creating Computational Artifacts
P3: Abstracting

P4: Analyzing Problems and Artifacts
P5: Communication

15

Code.org Computer Science Principles

Syllabus and Overview

Unit 5 - Performance Tasks

This unit is primarily set aside to ensure that students have enough time in class to work on and
complete their performance tasks for submission to the college board. There are a few guided
activities for teachers to run that will help students get organized and ensure they have
reasonable project plans that can be achieved in the time allotted.

Create Performance Task (Create PT)
For a full description of the Create PT see the College Board website for AP CS Principles.

For lessons related to the Create PT we will revisit the structure of the Digital Scene Design
project from Unit 3, which had students go through a 3-stage process to develop the final
artifact: 1) Plan 2) Code 3) Reflect. Emphasis will be placed on the planning portion to help
students come up with realistic goals for writing code, writing reflective prose, and preparing the
project for submission to the College Board.

Explore Performance Task (Explore PT)
For a full description of the Create PT see the College Board website for AP CS Principles.

For lessons related to the Explore PT we will revisit lessons learned from the Unit 2 lesson:
Security and Hacking in the Real World which was a research project similar to what is asked
for in the Explore PT. Students should have an innovation in mind that they want to research
coming into this Unit. Emphasis again will be placed on planning a realistic timeline to get the
necessary work done and prepared for submission to the College Board.

Code.org Computer Science Principles
Syllabus and Overview

Unit 5 Lessons

Part 1: Create Performance Task (Create PT)
e Reuvisit Digital Scene Design

o Plan
o Code
o Reflect

e Individual and Group Work Time

Part 2: Explore Performance Task (Explore
PT)
e Reuvisit Security and Hacking in the Real

World
o Research
o Write
o Reflect

e Individual and Group Work Time

Teacher Guidance

In Units 1-4 students engaged in projects to
learn and practice the skills and content they
needed to know in order to succeed on the
AP CSP Performance Tasks. Still, a certain
level of guidance during the PT development
process is not only recommended, but vital.
For example, coaching students early on
helps them clarify their ideas and/or
approaches to the PTs. In the official
submission to the College Board, teachers
will attest that all student work is original and
no work from earlier assignments is included.

Learning Objectives Addressed:
Creativity: 1.2.1,1.2.2,1.2.3,1.24,1.25
Abstraction: 2.2.1, 2.2.2

Data: 3.3.1

Algorithms: 4.1.1,4.1.2

Programming: 5.1.1,5.1.2,5.1.3, 5.2.1,
5.3.1,5.4.1,5.51

Global Impacts: 7.1.1,7.2.1,7.3.1,7.4.1

Computational Thinking Practices
Emphasized:

P1: Connecting Computing

P2: Creating Computational Artifacts
P3: Abstracting

P4: Analyzing Problems and Artifacts
P5: Communication

P6: Collaborating

