Curriculum Guide

Computer Science
Discoveries

VOO [£ T
4
~o...ocn =k B c o
5 i ¥
4009 . ‘.;a“‘ i
iy R
720 B
(2

CS Discoveries Curriculum Guide

Table of Contents

Curriculum Values
Pedagogical Approach To Our Values

Classroom Practices
Lead Learner
Pair Programming
Think-Pair-Share
Authentic Choice
Unplugged Activities
Peer Feedback

Student Practices
Problem Solving
Persistence
Creativity
Collaboration
Communication

Problem Solving Processes
The Problem Solving Process

Course Overview
Semester Overviews
Unit 1
Unit 2
Unit 3
Unit 4
Unit 5
Unit 6

Required Materials and Supplies
Technical Requirements

Planning for Your Year
Option A: Full Year
Option B: Separate Semesters
Option C: Single Semester
Making Adjustments

Navigating the Code.org Website
Code.org Site Navigation
The Course Overview Page
The Curriculum Unit Overview Page
The Code.org Lesson Plan Structure

Level Types
Informational Levels
Active Levels

DG

w

o NN o g M

© © © © ©o ©

25
26

26
26
26
26
26

27
27
27
28
29

31
31
31

CS Discoveries Curriculum Guide

Assessment and Feedback
Standards Mapping

Appendix A: Planning Handouts
Building Your Recruitment Plan
Build your Action Plan: Getting to Fall
Pacing and Planning: Instructional Units

Appendix B: The Problem Solving Processes
The Problem Solving Process
The Problem Solving Process for Programming
The Problem Solving Process for Design
The Problem Solving Process for Data

DG

<o

CS Discoveries Curriculum Guide
D]

Curriculum Values

While Code.org offers a wide range of curricular materials across a wide range of ages, the following values permeate
and drive the creation of every lesson we write.

Computer Science is Foundational for Every Student

We believe that computing is so fundamental to understanding and participating in society that it is valuable for every
student to learn as part of a modern education. We see computer science as a liberal art, a subject that provides students
with a critical lens for interpreting the world around them. Computer science prepares all students to be active and
informed contributors to our increasingly technological society whether they pursue careers in technology or not.
Computer science can be life-changing, not just skill training.

Teachers in Classrooms

We believe students learn best with the help of an empowered teacher. We design our materials for a classroom setting
and provide teachers robust supports that enable them to understand and perform their critical role in supporting student
learning. Because teachers know their students best, we empower them to make choices within the curriculum, even as
we recommend and support a variety of pedagogical approaches. Knowing that many of our teachers are new to
computer science themselves, our resources and strategies specifically target their needs.

Student Engagement and Learning

We believe that students learn best when they are intrinsically motivated. We prioritize learning experiences that are
active, relevant to students’ lives, and provide students authentic choice. We encourage students to be curious, solve
personally relevant problems and to express themselves through creation. Learning is an inherently social activity, so we
interweave lessons with discussions, presentations, peer feedback, and shared reflections. As students proceed through
our pathway, we increasingly shift responsibility to students to formulate their own questions, develop their own solutions,
and critique their own work.

Equity

We believe that acknowledging and shining a light on the historical inequities within the field of computer science is critical
to reaching our goal of bringing computer science to all students. We provide tools and strategies to help teachers
understand and address well-known equity gaps within the field. We recognize that some students and classrooms need
more supports than others, and so those with the greatest needs should be prioritized. All students can succeed in
computer science when given the right supports and opportunities, regardless of prior knowledge or privilege. We actively
seek to eliminate and discredit stereotypes that plague computer science and lead to attrition of the very students we aim
to reach.

Curriculum as a Service

We believe that curriculum is a service, not just a product. Along with producing high quality materials, we seek to build
and nourish communities of teachers by providing support and channels for communication and feedback. Our products
and materials are not static entities, but a living and breathing body of work that is responsive to feedback and changing
conditions. To ensure ubiquitous access to our curriculum and tools, they are web-based and cross-platform, and will
forever be free to use and openly licensed under a Creative Commons license.

<o

CS Discoveries Curriculum Guide
D]

Pedagogical Approach To Our Values

When we design learning experiences, we draw from a variety of teaching and learning strategies all with the goal of
constructing an equitable and engaging learning environment.

Role of the Teacher

We design curriculum with the idea that the instructor will act as the lead learner. As the lead learner, the role of the
teacher shifts from being the source of knowledge to being a leader in seeking knowledge. The lead learner's mantra is: “I
may not know the answer, but | know that together we can figure it out.” A very practical residue of this is that we never
ask a teacher to lecture or offer the first explanation of a CS concept. We want the class activity to do the work of
exposing the concept to students, allowing the teacher to shape meaning from what the students have experienced. We
also expect teachers to act as the curator of materials. Finally, we include an abundance of materials and teaching
strategies in our curricula - too many to use at once - with the expectation that teachers have the professional expertise to
determine how to best conduct an engaging and relevant class for their own students.

Discovery and Inquiry

We take great care to design learning experiences in which students have an active and equal stake in the proceedings.
Students are given opportunities to explore concepts and build their own understandings through a variety of physical
activities and online lessons. These activities form a set of common lived experiences that connect students (and the
teacher) to the course content and to each other. The goal is to develop a common foundation upon which all students in
the class can construct their understanding of computer science concepts, regardless of prior experience in the discipline.

Materials and Tools

Our materials and tools are specifically created for learners and learning experiences. They focus on foundational
concepts that allow them to stand the test of time, and they are designed to support exploration and discovery by those
without computer science knowledge. This allows students to develop an understanding of these concepts through “play”
and experimentation. From our coding environments to our non-coding tools and videos, all our resources have been
engineered to support the lessons in our curriculum, and thus our philosophy about student engagement and learning. In
that vein, our videos can be a great tool for sensemaking about CS concepts and provide a resource for students to return
to when they want to refresh their knowledge. They are packed with information and “star” a diverse cast of presenters
and CS role models.

Creation and Personal Expression

Many of the projects, assignments, and activities in our curriculum ask students to be creative, to express themselves,
and then to share their creations with others. While certain lessons focus on learning and practicing new skills, our goal is
always to enable students to transfer these skills to creations of their own. Everyone seeks to make their mark on society,
including our students, and we want to give them the tools they need to do so. When computer science provides an outlet
for personal expression and creativity, students are intrinsically motivated to deepen the understandings that will allow
them to express their views and carve out their place in the world.

The Classroom Community

Our lessons almost always call for students to interact with other students in the class in some way. Whether learners are
simply conferring with a partner during a warm up discussion, or engaging in a long-term group project, our belief is that a
classroom where students are communicating, solving problems, and creating things is a classroom that not only leads to
active and better learning for students, but also leads to a more inclusive classroom culture in which all students share
ideas and listen to ideas of others. For example, classroom discussions usually follow a Think-Pair-Share pattern; we ask
students to write computer code in pairs; and we strive to include projects for teams in which everyone must play a critical
role.

<o

CS Discoveries Curriculum Guide
D]

Classroom Practices

The classroom practices for CS Discoveries are different strategies that are used repeatedly in many different lessons and
units. These six classroom practices are at the core of the ways the curriculum is designed as we believe these are best
practices that lead to positive classroom culture and ultimately student learning.

The 6 Main Classroom Practices of CS Discoveries:
e Lead Learner

Pair Programming

Think-Pair-Share

Authentic Choice

Unplugged Activities

Peer Feedback

Lead Learner

What is it?

The curriculum has been written with the idea that the instructor will act as the lead learner. As the lead learner your role
shifts from being the source of knowledge to being a leader in seeking knowledge. The lead learner’s mantra is: “I may not
know the answer, but | know that together we can figure it out.” The philosophy of the lead learner is that you don’t have
to be an expert on everything; you can start teaching CS Discoveries knowing what you already know, and learn
alongside your students. To be successful with this style of teaching and learning, the most important things are modeling
and teaching how to learn.

How does it connect to the curriculum?

One of the Code.org curriculum values is developing teachers who are new to computer science. In order to support those
teachers, the curriculum is set up to create an engaging and relevant class that helps students uncover and develop the
knowledge they need. This makes it possible for a teacher to lead the course without knowing all of the answers at first,
as long as they embrace the lead learner role. In addition, it is not possible to have complete command over every
rapidly-changing facet of computer science, no matter how much experience you have. Rather than feeling daunted, the
lead learner welcomes this fact.

We believe that the lead learner technique represents good teaching practice in general. Acting as the lead learner is an
act of empathy toward your students and the challenges they face in learning material for the first time. One important job
of the teacher in the CS Discoveries classroom is to model excitement about investigating how things work by asking
motivating questions about why things work the way they do, or are the way they are. With your guidance, students will
learn how to hypothesize; ask questions of peers; test, evaluate, and refine solutions collaboratively; seek out resources;
analyze data; and write clear and cogent code.

How do | use it?
e Allow students to dive into an activity without presenting all the content first

Encourage students to rely on each other for support

Don’t give the answer right away, even if you know it

Feel open to making mistakes in front of students so that they see it is part of the learning process

Ask students questions that direct their attention toward the issue to investigate without giving away what they

need to change

e Model the steps you would go through as a learner of a new subject. Explain the different questions you ask
yourself along the way and the ways you go about finding answers

CS Discoveries Curriculum Guide n

<o
£

Pair Programming

What is it?

Pair programming is a technique in which two programmers work together at one computer. One, the driver, writes code
while the other, the navigator, directs the driver on the design and setup of the code. The two programmers switch roles
often. Pair programming has been shown to:

improve computer science enrollment, retention, and students' performance
increase students' confidence

develop students' critical thinking skills

introduce students to the "real world" working environment

How does it connect to the curriculum?

In CS Discoveries there are many lessons on the computer (plugged lessons) during which students develop
programming skills through online progressions. Pair programming can help to foster a sense of camaraderie and
collaboration in your classroom during sets of plugged lessons. It has been shown to increase the enroliment, retention,
and performance of students in computer science classes. It promotes diversity in the classroom by reducing the the
so-called "confidence gap" between female and male students, while increasing the programming confidence of all
students.

How do | use it?

To get students pair programming:
1.
2.
3.
4
5
6.

It can be hard to introduce pair programming after
students have worked individually for a while, so we

Form pairs

Give each pair one computer to work on
Assign roles

Have students start working

Ensure that students switch roles at regular
intervals (every 3 to 5 minutes)

Ensure that navigators remain active
participants

recommend that teachers start with pair programming

in the first few plugged lessons. Just like any other classroom technique, you may not want to use this all the time as
different types of learners will respond differently to working in this context. Once you have established pair programming
as a practice early on, it will be easier to come back to later.

Resources
Code.org also has a feature to help both students get “credit” on their accounts for the work they do together. Check out
the blog on Pair Programming: teacherblog.code.org/post/147349807334/try-pair-programmingtrack-the-progress-of

Videos (Created for CS Fundamentals, but still applicable:

For Teachers: youtu.be/sxToW3ixrwo
For Students: youtu.be/vgkahOzFH2Q

The National Center for Women & Information Technology (NCWIT) has a great resource about the benefits of pair
programming. Check it out at: www.ncwit.org/resources/pair-programming-box-power-collaborative-learning

http://teacherblog.code.org/post/147349807334/try-pair-programmingtrack-the-progress-of
https://youtu.be/sxToW3ixrwo
https://youtu.be/vgkahOzFH2Q
https://www.ncwit.org/resources/pair-programming-box-power-collaborative-learning

<o

CS Discoveries Curriculum Guide
D]

Think-Pair-Share

What is it?
Think-Pair-Share is a three part activity where students are presented with a problem or task to work on.

Think: First, students work individually. Working individually gives students the opportunity to collect their thoughts
before communicating them with others. They should write down their thoughts in a journal for later sharing.

Pair: Once students have had time to work individually, they then enter the “Pair’ stage where they work with a small
group. These groups can consist of two or three students. The group discusses the thoughts each member collected
during the “Think” stage. The goal is for students to engage in a low-risk discussion where they get a chance to share
their ideas with others. This activity is especially useful in the early stages of developing collaborative skills such as
attentive listening to a partner.

Share: Finally, the groups will share out some of the ideas they discussed to the whole class and the discussion will
continue as needed in the whole group setting. This allows major ideas to bubble up to the whole group, where
everyone can hear and benefit from them.

How does it connect to the curriculum?

Almost every lesson in the CS Discoveries curriculum involves some kind of discussion that uses a version of
Think-Pair-Share. It is one of the most common practices used for warm ups and wrap ups. Think-Pair-Share is used for
these discussions as it gives students time to think on their own and engage with the content before talking to someone
else. When students talk to their partner it should be a low risk environment to try out an idea. It also allows everyone to
play a part in the discussion, even if they don't like talking in the whole class environment.

How do | use it?
e Whenever you are given a prompt, consider giving students time to work individually and then with a partner
before bringing the discussion or creation to the whole class.
e View Think-Pair-Share as a way for the class to learn from each other as much as possible. Keep your lead
learner hat on and direct the conversation without giving away answers or cutting off the conversation too early.

Authentic Choice

What is it?

Authentic choice is the practice of allowing students to decide on the focus of their creation when they are working on a
creation. This can be scoped in different ways with different projects, but the central point is to allow students to work on
something they are personally invested in.

How does it connect to the curriculum?

In the curriculum, we give students many opportunities to work on projects that we hope will feel personally relevant.
There is often a focus for the project, but the way it could be implemented leaves room for students to put their personal
stamp on the creation. In addition, we encourage teachers to help students adapt projects to their interests when possible.

How do | use it?
e Give students time to get creative and find something they are passionate about in the project that they are
working on
e Encourage students to find personally relevant contexts for the work they do
e Try to keep the projects as open to students’ interests as possible while still keeping them focused on the learning
at hand

CS Discoveries Curriculum Guide n

Unplugged Activities

What is it?

In Code.org curriculum, we refer to activities
where students are not on the computer as
unplugged lessons. Ones where they are on
the computer are called plugged lessons.

How does it connect to the
curriculum?

Unplugged activities are more than just an
alternative for the days when the computer lab
is full. They are intentionally-placed kinesthetic
opportunities that help students digest
complicated concepts in ways that relate to
their own lives. When we write the curriculum,
we plan the progression of unplugged and plugged lessons to build on each other. Often something that is done in an
unplugged environment is setting the stage for or reviewing a concept done in a plugged environment. Both are vital
pieces of the curriculum as they build student knowledge and understanding in different ways. In addition, unplugged
lessons can help build and maintain a collaborative environment in your classroom. An unplugged environment also can
be a good way to check for student understanding.

How do | use it?
e Don'’t skip these lessons!
e Try to give the lessons in the order they were written in as best as possible
e Help students make sense of how the activity connects to the concepts they are learning in earlier and later
lessons
e Call back to relevant unplugged activities during plugged lessons

Peer Feedback

What is it?

Peer feedback is the practice where students give each other feedback on work they have done. The feedback is meant
to provide opportunities for students to learn from each other, both by seeing ways others approached the same problem
and by incorporating feedback to improve their own work.

How does it connect to the curriculum?

Throughout the CS Discoveries curriculum, there are many activities that are structured moments for students to give
each other peer feedback. We support these activities with structured guides for the peer feedback process. Many of the
guides follow a similar format where students are first given the opportunity to express what they would like feedback on.
Then the peer reviewer gives feedback on some standard questions, often related to the goals of the work, as well as
leaving some free response feedback using the sentence starters “I like,” “| wish,” and “What if.” Finally, students are
encouraged to reflect on the feedback they received and think about ways to incorporate it in the future.

How do | use it?
e Create a structured peer feedback process
Decide who is giving who feedback
Allow students to share some areas that they would like feedback on
Give students time to provide feedback
Give students time to respond and incorporate feedback
Provide examples of constructive feedback
Have students use sentence starters for their feedback such as: | like, | wish, What if
Treat this as a skill that students develop throughout the course and which they will need to be taught.

<o
£

CS Discoveries Curriculum Guide n

Student Practices

Students in CS Discoveries work in a wide array of contexts, but these experiences are tied together by a core set of
practices they develop throughout the course. These student practices provide coherence and serve as helpful reminders
of the high-level skills and dispositions they should be continually developing. Throughout the curriculum you will find
reminders of moments when students can reflect on this development, and all major projects include an opportunity for
student reflection on their growth in each practice.

Problem Solving
Use a structured problem solving process to help address new problems
View challenges as solvable problems
Break down larger problems into smaller components

Persistence
Value and expect mistakes as a natural and productive part of problem solving
Continue working towards solutions in spite of setbacks
Iterate and continue to improve partial solutions

Creativity
Incorporate your own interests or ideas into your work
Experiment with new ideas and consider multiple possible approaches
Extend or build upon the ideas and projects of others

Collaboration
Work with others to develop solutions that incorporate all contributors
Mediate disagreements and help teammates agree on a common solution
Actively contribute to the success of group projects

Communication
Structure your work so that it can be easily understood by others
Consider the perspective and background of your audience when presenting your work
Provide and accept constructive feedback in order to improve your work

<o

CS Discoveries Curriculum Guide
Dl

Problem Solving Processes

Structured problem solving, through our Problem Solving Process, is a tool for student growth and development which has
been woven throughout the entire course. While students learn the generalized Problem Solving Process in Unit 1, we
have also developed versions of the process that more clearly articulate what each step looks like in the context of
Programming, Design, and Data. The detailed problem solving processes for Programming, Design, and Data can be
found in Appendix B.

Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6

The Problem The Problem The Problem The Problem The Problem The Problem

Solving Process Solving Process Solving Process Solving Process Solving Process Solving Process
for Programming for Programming for Design for Data for Programming

The Problem Solving Process
Having a strategy for approaching problems can help you develop new insights and come up with new and better
solutions. This is an iterative process that is broadly useful for solving all kinds of problems.

Define
e Determine the problem you are trying to solve “
e Identify your constraints Prepare

e Describe what success will look like

Prepare
e Brainstorm / research possible solutions
e Compare pros and cons
e Make a plan

Try

e Put your plan into action “

Reflect

e Compare your results to the goals you set while defining the problem
e Decide what you can learn from this or do better next time
e |dentify any new problems you have discovered

10

CS Discoveries Curriculum Guide

Course Overview

What is Computer Science Discoveries?

Computer Science Discoveries (CS Discoveries) is an
introductory computer science course that empowers students to
create authentic artifacts and engage with computer science as
a medium for creativity, communication, problem solving, and
fun.

Designed with equity in mind

CS Discoveries is designed from the ground up to be an
accessible and engaging course for all students, regardless of
background or prior experience. It provides students
opportunities to engage with culturally and personally relevant
topics in a wide variety of contexts and aims to show all students
that CS is for them.

Focus on creation

We know that giving students agency in their learning is a powerful tool for creating fun, engaging, and lasting learning
experiences. CS Discoveries focuses on the skills that enable students to create and express themselves in a variety of
contexts and media. Whether they are developing their own website, designing an app, building a game, or creating a
physical computing device, students are empowered to bring their ideas to life.

Completing a K-12 pathway

CS Discoveries is designed to fit naturally
between our CS Fundamentals courses and
our CS Principles course. While each of
these courses is designed to be an
age-appropriate entry point to computer
science, students with previous experience
will find many new topics to explore, and
they will revisit familiar topics in novel and
more challenging contexts.

Supports for new-to-CS teachers

Elementary
e de s e s e e ool]z
CS Fundamentals

Middle High

CS Principles

CS Discoveries is specifically designed to support new-to-CS teachers. The curriculum includes detailed lesson plans
and frequent teaching tips. The accompanying forum is an active community that teachers can use to discuss their
practice and find additional resources. Teachers can also apply for our professional learning program for further

support.
Semester1
Unit 3
Exploration and Animations and
Expression Games
Semester 2 ~
Unit 6
Innovation and Physical
Computing

Impact

Flexible implementation

CS Discoveries is appropriate for 6th to 10th
grade classrooms and can be used in either
middle or high school. The two semesters build
on each other, allowing the course to be taught
as a single semester, two sequential semesters,
a full-year course, or even integrated into
existing technology classes.

11

CS Discoveries Curriculum Guide

Professional Learning Program

Teachers implementing CS Discoveries as a semester or full-year
course can apply to participate in a one-year professional learning
program. Participation is not required to use any course materials.
The professional learning program includes:

e Summer Workshop: A 5-day, in-person, workshop held
during the summer, designed to introduce core teaching
practices and CS concepts from the curriculum (Travel may
be required)

e School Year Workshops: Follow-up one-day workshops
typically held on the weekends, where teachers receive
support on upcoming units and have a chance to collaborate
with other teachers

e Online Modules: Unit-specific teaching supports to use while preparing to teach the lessons

e Forum: An active online community where teachers can ask questions, find resources, and collaborate

Powerful tools with a high ceiling

CS Discoveries introduces students to tools and programming languages that are accessible for beginners while offering
more advanced students opportunities to create sophisticated projects. Using Code.org’s existing App Lab programming
environment and our new programming environment, Game Lab, students will be able to transition from blocks to typed
code at their own pace while learning JavaScript. Students will also develop maker skills through the study of physical
computing at a very accessible cost. All of the tools below are integrated directly into the Code.org website, allowing
teachers to have visibility into all student work and progress.

Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6

Maker Toolkit

with Circuit
Playground

Game Lab

e Web Lab — A browser-based tool for creating and publishing HTML and CSS web sites

e Game Lab — A browser-based JavaScript programming environment designed to create sprite-based drawings,
animations and games, with the ability to freely switch between programming in blocks or text

e App Lab — A browser-based JavaScript programming environment for creating interactive apps, with the ability
to freely switch between programming in blocks or text

e Maker Toolkit — A collection of commands that extends App Lab’s capabilities to allow students to easily
program the Circuit Playground and many other physical computing devices directly from App Lab

e Circuit Playground — Adafruit’'s new low-cost Arduino-based microcontroller featuring multiple integrated
sensors and output devices

12

CS Discoveries Curriculum Guide

©)al
o

Semester Overviews

Semester 1 - Exploration and Expression
Overview

The first semester of CS Discoveries introduces students to computer science as a vehicle for problem solving,
communication, and personal expression. As a whole, this semester focuses on the visible aspects of computing
and computer science, and encourages students to see where computer science exists around them and how they
can engage with it as a tool for exploration and expression.

Unit 1: Students learn the problem-solving process, the input-output-store-process model of a
Problem Solving computer, and how computers help humans solve problems. Students end the unit by
proposing their own app to solve a problem.

Unit 2: Students learn to create websites using HTML and CSS inside Code.org’s Web Lab
Web Development environment. Throughout the unit students consider questions of privacy, and
ownership on the Internet. Students develop a personal website throughout the unit.

Unit 3: Students learn many fundamental programming constructs and practices in the
Animations and Games JavaScript programming language while developing animations and games in
Code.org’s Game Lab environment. Students end the unit by designing their own
animations and games.

Semester 2 - Innovation and Impact
Overview

Where the first semester centers on the immediately observable and personally applicable elements of computer
science, the second semester asks students to look outward and explore the impact of computer science on society.
Students will see how a thorough user-centered design process produces a better application, how data is used to
address problems that affect large numbers of people, and how physical computing with bare circuit boards allows
computers to collect input and return output in a variety of ways.

Unit 4: Students apply the problem-solving process to the problems of others, learning to
The Design Process empathize with the needs of a user and design solutions to address those needs.
During the second half of the unit students form teams to prototype an app of their own
design, first on paper and eventually in Code.org’s App Lab environment.

Unit 5: Students explore different systems used to represent information in a computer and
Data and Society the challenges and tradeoffs posed by using them. In the second half of the unit

students learn how collections of data are used to solve problems and how computers
help to automate the steps of this process.

Unit 6: Students use Code.org’s App Lab environment, in conjunction with the Adafruit Circuit
Physical Computing Playground, to explore the relationship between hardware and software. Throughout
the unit, students develop prototypes that mirror existing innovative computing
platforms, before ultimately designing and prototype one of their own.

13

CS Discoveries Curriculum Guide
D]

Unit 1

Overview

Unit 1 is a highly interactive and collaborative introduction to the field of computer
science, as framed within the broader pursuit of solving problems. Through a series of
puzzles, challenges, and real world scenarios, students are introduced to a problem
solving process that they will return to repeatedly throughout the course. Students then
learn how computers input, output, store, and process information to help humans solve
problems. The unit concludes with students designing an application that helps solve a
problem of their choosing.

Core Frameworks

e Problem Solving Process
e Whatis a Computer? - Input, Output, Storage and Processing

Attitudinal Goals

Students will...
e Build a collaborative classroom environment
e Develop positive attitudes toward computer science
(relevant, collaborative, fun and empowering)

PROCESSING

Big Questions

Chapter 1 - The Problem Solving Process

INPUT OUTPUT

e What strategies and processes can | use to become a more
effective problem solver?

Chapter 2 - Computers and Problem Solving ACRACE
e How do computers help people to solve problems?
e How do people and computers approach problems differently?
e \What does a computer need from people in order to solve problems effectively?
Lessons and Pacing
m . The Problem Solving Exploring Problem
Week 1 Intro to Problem Solving Hoctass Solving
04
Week 2 . What is a m Input and Processin Storage
ee Computer? Output oo 9 9
m Apps and m .)
Week 3 Problem Solving Project - Propose an App

14

CS Discoveries Curriculum Guide

Unit 2

Overview

<o
ole

In Unit 2, students are empowered to create and share the content on their own web pages. They begin by thinking about
the role of the web and how it can be used as a medium for creative expression. As students develop their pages and
begin to see themselves as programmers, they are encouraged think critically about the impact of sharing information
online and how to be more critical content consumers. They are also introduced to problem solving as it relates to
programming while they learn valuable skills such as debugging, commenting, and structure of language. At the
conclusion of the unit, students will have created a personal website they can publish and share.

Core Frameworks

Problem Solving Process for Programming

How to Set Up a Web Page? - Content, Structure, Style
HTML and CSS

Digital Citizenship

Attitudinal Goals

Students will...
e View computer science as a form of expression
e See themselves as programmers
e Develop as thoughtful creators and critical online consumers

Big Questions

Chapter 1 - Web Content and HTML

How can text communicate content and structure on a web page?
Why do people create websites?

How can | incorporate content | find online into my own webpage?
What strategies can | use when coding to find and fix issues?

Chapter 2 - Styling and CSS

e How do | modify the appearance and style of my web pages?

e How do | safely and appropriately make use of the content published on the Internet?

WORDS HTML
&
IMAGES

THE CONTENT THE STRUCTURE

THE STYLE

15

CS Discoveries Curriculum Guide

Tool - Web Lab

B

Description: Web Lab is a browser-based text-editor for building web pages in HTML and CSS. It features a text-editor
with many helpful tools for creating and debugging HTML and CSS code, as well as a live preview of the web page that
updates in real time and the ability to publish the completed web page to its own unique URL. Try the tool at
studio.code.org/p/weblab.

Lessons and Pacing

Week 1

Week 2

Week 3

Week 4

Week 5

Week 6

_
Exploring Websites V;ebsﬂes: for Intro to HTML
Xpression m
Headers Digital Footprint
-
m Lists Intellectual Clean Code and
| Property Debugging -
Project - Multi-Page Websites
-
mStyling Text with Styling Elements Sources and RGB Colors and
CSS - with CSS - Search Engines Classes -
Project - Personal Portfolio Website
(-

16

<o
£

CS Discoveries Curriculum Guide n

Unit 3

Overview

In Unit 3, students build on their coding experience as they create programmatic images, animations, interactive art, and
games. Starting off with simple, primitive shapes and building up to more sophisticated sprite-based games, students
become familiar with the programming concepts and the design process computer scientists use daily. They then learn
how these simpler constructs can be combined to create more complex programs. In the final project, students develop a
personalized, interactive program. Along the way, they practice design, testing, and iteration, as they come to see that
failure and debugging are an expected and valuable part of the programming process.

Core Frameworks

Problem Solving Process for Programming

Sequencing and program flow

Abstraction in programming

Common programming structures: variables, conditionals, functions
JavaScript

Attitudinal Goals

Students will...
e View programming as fun, creative, and expressive
e Understand that complex programs are constructed from simple concepts
e Feel that programs can be read and understood

Big Questions

Chapter 1 - Images and Animations

e Whatis a computer program?
What are the core features of most programming languages?
How does programming enable creativity and expression?
Which practices and strategies will help me as | write programs?

Chapter 2 - Building Games

e How do software developers manage complexity and scale?
e How can programs be organized so that common problems only need to be solved once?
e How can | build on previous solutions to create even more complex behavior?

function draw () {

COMMANDS INSIDE
RUN LINE BY LINE

17

CS Discoveries Curriculum Guide

Tool - Game Lab

Description: Game Lab is a programming
environment for developing animations and
games using JavaScript. Students create
sprites - characters whose appearance,
movement, and interactions can be controlled
through code. A preloaded library of images
and sounds and a full-featured pixel editor
allows students to customize the look of their
sprites. Using Game Lab, students learn
fundamental programming constructs while
being given the freedom to create their own
virtual worlds. Students can program in either
blocks or text and instantly switch between
either mode. Game Lab allows curriculum to
use a scoped toolbox of commands that

STUDIO

Stage 11: Velocity

Savedd T minutes sg0

Looping

Puzzie Tiof 11

The game will be mare fun if the frog can jump more than once. You can make the
mushroom “loap” by checking whether it's moved past the left edge and moving it back

to the right edge when it has.

<] Toalbax
Game Lab
il orawing

I series
I control
Math

drawSprites ()

/f Comment

@ Version History | ¢ Show Text

focuses attention on the specific blocks or concepts being introduced in that lesson. In addition embedded support tools to
help students track down errors in their code. Try the tool at code.org/gamelab.

Lessons and Pacing

Programming for

Week 1 Entertainment

Plotting Shapes

-
Drawing in Game

Lab m

Parameters and
Randomization =

Counter Pattern

0
B B[B

Week 2 Variables Sprites o The Draw Loop Unplugged
09 i
Week Sorite Movernent Booleans Booleans and Conditionals and
eek 3 pri ¥ Unplugged Conditionals User Input
(- - -
-
omplex . .
Week 4 Conditionals Project - Interactive Card
- (]
m Collisi o lex Sprit
. ollision omplex Sprite ..
Week 5 Velocity - Collisions
- Detection - Movement = -
E FTe
Week 6 Functions The Game Design Process ring t :m::;: esign
& (- -
Week 7 Project - Design a Game
-

18

<o
£

CS Discoveries Curriculum Guide n

Unit 4

Overview

In Unit 4, students transition away from thinking about computer science as a tool to solve their own problems and begin
to examine the broader social impacts of computing. Through a series of design challenges, students are asked to
consider and understand the needs of others while developing a solution to a problem. The second half of the unit
consists of an iterative team project, during which students have the opportunity to identify a need that they care about,
prototype solutions both on paper and in App Lab, and test their solutions with real users to get feedback and drive further
iteration.

Core Frameworks

" Prepare

e The Problem Solving Process for Design
e Low Fidelity Prototyping
e User Testing

Attitudinal Goals

Students will...
e View computer science as a tool for social impact “
e Value empathy and understanding of a user
e Appreciate the many roles in software development

Big Questions

Chapter 1: User Centered Design
e How do computer scientists identify the needs of their users?
e How can we ensure that a user's needs are met by our designs?
e What processes will best allow us to efficiently create, test, and iterate upon our designs?

Chapter 2: App Prototyping
e How do teams effectively work together to develop software?
e What roles beyond programming are necessary to design and develop software?
e How do designers incorporate feedback into multiple iterations of a product?

CS Discoveries Curriculum Guide

Tool - App Lab

Description: App Lab is a programming environment for
developing applications in JavaScript. A drag-and-drop
editor allows students to add and edit page elements without
having to write the associated HTML and CSS. Working in
either blocks or text, students programmatically define the
behavior of these page elements. The scoped toolbox of

TrZIXFObKDSMY}JUQ/view e300 mO-@=
8 [} e i o L S s

Hi Josh ¥

<P Show Text

n targe!
(Or simply double
Click to Start Round [LRCUEREID]
I t

commands focuses attention on the specific blocks or g
concepts being introduced in that lesson. The embedded
support tools help students track down errors in their code. i
Thanks to these features App Lab is particularly well-suited yre 0 score:0
for quickly prototyping simple apps.Try the tool at =
code.org/applab.

Lessons and Pacing

Event Driven

Week 1 Analysis of Design Understs::l:ng Your User—Cent‘e:'ftcilvli::;sign Micro
Week 2 = User Interfaces Fe_l?::?:;"d = ldent::;-:lgs User Prcg::tto -t:::er
Week 3 m Designing Apps for Good m Market Research
Week 4 m Paper Prototypes m Prototype Testing

12

15]

Week 5 Digital Design : Basic App Functionality
Programmin
= s 4 = =
Week 6 Testing the App Improving and Iterating
Week 7 Project - App Presentation

20

CS Discoveries Curriculum Guide g

Unit 5
Overview

This unit encourages students to think about the importance of data in solving problems and highlights how computers

can help in this process. The first chapter explores different systems used to represent information in a computer and the
challenges and tradeoffs posed by using them. In the second chapter, students learn how collections of data are used to
solve problems, and how computers help to automate the steps of this process. The unit concludes by asking students to
consider how the data problem solving process can be applied to an

Core Frameworks

e The Problem Solving Process for Data
e Information Representation
e Binary Systems

Attitudinal Goals

Students will... :)
e View data as an important tool for solving problems 2
e Understand the importance of representation systems in o ﬁ%
computing |

e Appreciate the advantages and disadvantages of
automated decision making

H

Big Questions e |

Chapter 1: Representing Information

T

Why is representation important in problem solving?
What features does a representation system need to be useful?
What is necessary to create useable binary representation

systems? Age 00

e How can we combine systems together to get more complex Name 01
information? e

03

04

Chapter 2: Solving Data Problems -
06

e How does data help us to solve problems? 07
How do computers and humans use data differently? Weight 08
What parts of the data problem solving process can be Breed 09
automated? o

e What kinds of problems do computers use data to solve in the i
real world? i

13

14

15

21

CS Discoveries Curriculum Guide

Tool

B

The majority of this unit features unplugged lessons, but in a few instances students use online tools such as a
spreadsheet tool of the teacher’s choice, a survey tool of the teacher’s choice, and the Code.org Pixelation Widget.

Lessons and Pacing

Week 1

Week 2

Week 3

Week 4

Representation

Patterns and

ASCII and Binary

Representing

Matters Representation Representation Images
. B N 08)
Representing Eight Bit Combining Create a
Numbers Numbers Representations Representation
10 i
m Problem Solving . Decﬁ?::;gwith Interpreting Automating
and Data Data Data Data Decisions

Problem Solving
with Big Data

Project - Solve a Data Problem

22

<o

CS Discoveries Curriculum Guide
D]

Unit 6

Overview

In Unit 6, students further develop their programming skills while exploring the role of hardware platforms in computing.
Harkening back to the Input and Output elements of the Input/Storage/Processing/Output model for computing, students
examine current and “smart” devices to understand the ways in which different sensors can provide more effective input
and output than the traditional keyboard, mouse, and monitor. Using App Lab and Adafruit’'s Circuit Playground, students
develop programs that utilize the same hardware inputs and outputs that they saw in the smart devices they explored
earlier, and they get to see how a simple rough prototype can lead to a finished product. The unit concludes with a design
challenge that asks students to use the Circuit Playground as the basis for an innovation of their own design.

A

Core Frameworks

Problem Solving Process for Programming
Event-driven programming

Hardware input and output

Physical prototyping

JavaScript

Attitudinal Goals

Students will...
e View hardware as an approachable and fun topic in
computing

e Believe that anyone can contribute to innovation
e Feel equipped to use physical computing to solve problems

Big Questions

Chapter 1: Hardware Output

e How does software interact with hardware?
e How can computers communicate information with simple hardware outputs?
e How can programs be made to repeat tasks?

Chapter 2: Hardware Input

e How can computers sense and respond to their environment?
e How can complex real-world information be represented in code?
e How can simple hardware be used to develop innovative new products?

Circuit Playground App Lab

My Srmart Homa
Maker Toolkit B——

Mw

Ambiant Mol 1d%

vl B g s

23

CS Discoveries Curriculum Guide

Tool - App Lab with Maker Toolkit

<o
ole

Description: The Maker Toolkit is a set of additional commands available in App Lab that allow you to communicate with
a Circuit Playground plugged into USB. Using the same drag-and-drop editor that students have become comfortable with
in App Lab and Game Lab, students can turn on LEDs, read sensors, and write programs that use physical hardware for
user input and output. By integrating these commands. App Lab makes it simple to quickly prototype apps that combine
hardware and software without the overhead of installing additional software or worrying about wiring and electronics. Try
the tool at code.org/applab.

cooe CEFIETY

Player 2
Right Button

Lessons and Pacing

Week 1

Week 2

Week 3

Week 4

Week 5

Week 6

(<] Toolbox oY Workspace:
Ul controls Jl cenvas P ——
Data I Turtie
Il vk =T (v "press”]
Jl control Math
. m i s_idervalue = 1
[l veriables J| Functions

(v"sliderl", sliderValue);|

event

[component]

sliderValue === 0|

showElement (v "winnerText");

©® 9 0 os W oNe

10
i
12 lon
13
14

15

16 showElement (v "winnerText") ;

interva.

19

setText (v "winnerText", "Player 1 Wins!");

17 setText (v "winnerText", "Player 2 Wins!");

m Innovations in m m
Computing Input Unplugged Event Types o
04
. Getters and m The Circuit m .
Setters Playground LIRES
(- L -
08 00 |
Lists and For
Color LEDs For Loops Loops
- L L
Ilc;g‘:s’ Project - Board Output
(=] -
m . Sensor
Physical Input Analog Input i
- Applications -
Project - Prototype an Innovation
-

24

CS Discoveries Curriculum Guide

Required Materials and Supplies

<o
ole

One potentially significant cost to consider when teaching this course is printing. Many lessons have handouts that are
designed to guide students through activities. While it is not required that all of these handouts be printed, many were
designed with print in mind and we highly recommend their use.

Beyond printing, some lessons call for typical classroom supplies and manipulatives such as:
e Student journal (See below for more details)

Poster paper

Markers, colored pencils, etc.

Scissors

Scrap paper

Glue or tape

Post-it notes (or similar sized scrap paper)
Rulers or a straight edge of some kind
Index cards (or similar sized scrap paper)

The following items are called for in certain units:

Unit Materials Alternatives
Aluminum foil The pennies can be replaced with
Unit 1 Container for water some other kind of weight of the
Pennies same size.
Playing cards (1 deck per 8 students) None
Unit 1
Access to a spreadsheeting tool None but there are free options
Unit 5
Classroom set of Circuit Playgrounds None - this is the only board
Unit 6 (1 board and micro USB cable for every 2 students) currently supported by the
Check out code.org/circuitplayground for more details. curriculum.
Journaling:

The curriculum frequently provides opportunities for student journalling. When students are asked to journal, it is done
with the assumption that they will have access their journal writings throughout the course to use as a tool for review and
reflection. Occasionally students are also asked to revisit specific journal prompts. The medium used for journaling can
vary depending on classroom needs. Whichever format you choose should allow for consistent access by both the
student and the teacher. The most common approaches include:

e Physical Notebooks: We recommend that notebooks be kept together and not allowed to leave the classroom.
Composition book style binding tends to be more effective for this purpose, rather than spiral-bound notebooks.

e Digital Documents: Whether you use Google Docs, a blogging platform, or another computer-based tool, the
most important thing to consider is your access as a teacher. Find a tool that allows you consistent access to the
journal so that you may use it to check for understanding.

Journaling prompts are frequently used as a reflective wrap up and to record concepts for later reference. You may also
choose to use your journals for exit tickets, to support think-pair-share discussions, or in lieu of some activity guides.

25

http://code.org/circuitplayground

<o
£

CS Discoveries Curriculum Guide n

Technical Requirements

The course requires and assumes a 1:1 computer lab or setup such that each student has access to an
internet-connected computer every day in class. Each computer must have a modern web browser installed. All of the
course tools and resources (lesson plans, teacher dashboard, videos, student tools, programming environment, etc.) are
online and accessible through a web browser. For more information about tech setup go to: code.org/educate/it

While the course features many “unplugged” activities away from the computer, daily access to a computer is essential for
every student. However, it is not required that students have access to internet-connected computers at home. Because
almost all of the materials are online, internet access at home is certainly an advantage. PDFs of handouts, worksheets
and readings are available on the course website.

Planning for Your Year

CS Discoveries is designed to be taught as a single semester, two semesters over multiple years, or a full year course. In
order to accommodate the inevitable scheduling constraints you may encounter, we’ve also broken each unit into two
chapters, allowing a clean break point roughly halfway through. The following pacing guide gives a rough
recommendation for unit length, assuming that your class meets five days a week for at least 45 minutes per session.

Unit 1 (3-4 weeks) Unit 2 (6-7 weeks) Unit 3 (7-8 weeks)
Chapter 1 Chapter 2 Chapter 1 Chapter 2 Chapter 1 Chapter 2
1 week 2 weeks 4 weeks 2 weeks 4 weeks 3 weeks

Unit 4 (7-8 weeks) Unit 5 (4-5 weeks) Unit 6 (6-7 weeks)
Chapter 1 Chapter 2 Chapter 1 Chapter 2 Chapter 1 Chapter 2
2 weeks 5 weeks 2 weeks 2 weeks 4 weeks 2 weeks

Option A: Full Year

If teaching the course as a full year, we recommend teaching all six units in the order presented.

Option B: Separate Semesters

If teaching the course as two separate semesters, and/or spread out over multiple grade levels, we recommend that you
ensure that students complete the first semester before the second.

Option C: Single Semester

If you only intend to teach a single semester fo CS Discoveries, we recommend that you teach units 1, 2, and 3.
Making Adjustments

The most important thing to consider when making adjustments to the course is that the course was designed to go in
order. There are dependencies between units, which may not be obvious to someone who has not taught the course
before. Skipping over units is not recommended. In addition, something to consider is that each chapter is designed to
culminate in an assessable project. If running up against a deadline, consider planning to stop at a chapter break. You
may want to stop at the chapter break in the middle of a unit or to spend some extra time on an end of chapter project
instead of just scratching the surface of the following unit.

26

http://code.org/educate/it

CS Discoveries Curriculum Guide

©)al
o

Navigating the Code.org Website

Code.org Site Navigation

Log into Code.org with your teacher account. The website header will help you navigate the site:

Your homepage will provide quick See all the projects you have See your registrations for upcoming
links to manage your classroom created and your students have workshops and find online professional
sections. published. learning resources.
Home Courses Project Gallery Sections Professional Learning =
You will find the Full catalogue of Code.org courses Set up your classroom and
here. When you assign a course to a section, you see monitor their assessments
a tile For it on your homepage. and progress.

Once you’ve assigned CS Discoveries to your section, click the tile on your homepage to reach the course overview page.
This is your starting point for lesson planning, professional learning, and all the resources you need to teach the course.

The Course Overview Page

The course overview page will provide quick links to go to the following:

Computer Science Discoveries

Assign this
course to one of
your sections.

et Assign course W Teacher Forum

Pick a section
to see settings
for this course,

Professional Learning

’—. Default my students to: [The full course page 4 J CSD Period 4 #_]‘7
Set default 1 . g
ctudent view to Unit 1 - Problem Solving

full course or

specific unit, Make this unit

visible or hidden

from students.

Links to unit
e s Wisible :engﬁrges like
overview page . _ UEE s i
ey el Unit 2 - Web Development ;?::;a"rzf’
lessons and ¢
resources for mappings, etc.
this unit.

Go to Unit

27

CS Discoveries Curriculum Guide

The Curriculum Unit Overview Page

High-level planning should start by looking the unit overview page on curriculum.code.org.

o 51 OOOOOOOOO

Get to this page by
clicking on the big

UNIT number from
any lesson plan (or
the overview link in

]

Unit 1 - Problem Solving

Owerview Standards Vocab Resources Lessons PDF Handouts PDF

|

the purple link bar)

o Problem
Salving

B

Handy links to
cumulative
resources for the
whole unit. E.g.
Vocab list for the
whole unit.

The Problem I— e
Salving Pracess

Isa
Computar?

put and
Output

Appe and
Problem
Solving

=

Chapter 1: The Problem Solving Process

Big Questions

Weekly calendar
shows rough
pacing of
lessons.

Week by week
listing of every
lesson with brief

Week 1

summary and | —Lesson 1: Intro to Problem Solving
links to the full
lesson plan. — —

Lesson 2: The Problem Solving Process
Direct links to ..’-" - ~ ~m
I n ~ w -
: ff'f,m?s“ e Week 3
handouts, guides. Lesson 8: Apps and Problem Solving

I N —

Lesson 9: Project - Propose and App

Explains the
e |_—¥ Chapter Commentary
chapter. Unit 1 Chapter 1 - What's the Story?

Pacing Calendar

Big questions, also
known as
“framing”
questions give the
big picture of the
chapter.

Every unit is a
“story" that is
broken into
“chapters”. Each
chapter is a
collection of
lessons.

The Problem Solving
Process

F

F

Exploring Problem
Solving

Inputs and
Outputs

F Processing

F Storage

The calendar on the unit overview

page shows the relative “size” of each Week 1 F " soning
lesson and suggests what you might

be able to get through in a week. What is a
Larger projects are marked in purple. B F i

If you finish the set of lessons for a Week 3 F "F‘r’g;!:'ﬁf
week early you can absorb the time if i

i
[

Project - Propose an App

the previous week went long, or start
the next week early, time permitting.

28

CS Discoveries Curriculum Guide

The Code.org Lesson Plan Structure

<o
ole

Every lesson plan has a common structure that should make it easy to find what you need. Planning for a lesson starts by
looking at the overview, then reviewing the core activity to get a deeper sense of what it is and how long it might take.

Types of activities in
the lesson

What happens in this
lesson, What do
students do?

Why is this lesson
important? What's
the point?

Hyperlinked outline of
lesson

Lesson Plan

Click to see
unit overview

Click a bubble to navigate
to a lesson in this unit

Important links,
esp. PDFs

UNIT Ch.1

L

Lesson 4: What is a Computer?

Unplugged | Concept Invention

Overview

Purpose

Agenda

Teaching Guide

Warm up or thought
starter for the lesson

Getting Started
T

The main activity
works toward the
objectives. Format
varies widely
depending on type of
lesson

Activity

Bring closure to the
lesson -- typically
sense-making activity
or discussion

Wrap Up

I

Extra information
about the lesson

Extended Learning
Assessment

Lesson Length

" Standards Alignment

000-:0:0

Overview Lessons PDF Handouts PDF

Objectives
-
-
-

Preparation

-
-
-

Links
-
-

Vocab

Introduced Code

Support
Lesson Forum
Report Bug

Info & Resources

Lesson objectives as
“student will be able to”
statements

Prep. esp. acquiring
materials if necessary

Main repository for
lesson resources:
activity sheets,
handouts, videos, etc.

Vocab introduced or
referenced in this lesson

New code introduced in
this lesson

Other supports for this
lesson - links to
professional learning
modules, teacher forum,
etc.

Callouts

Pedagogical suggestion
or information that might
affect your instruction

Succinct computer
science content
infarmation for teachers
relevant to lesson

Guidance to help you
direct discussion, keep
things on track, and hit
the main points

Lessons in CS Discoveries are written for a wide variety of classrooms. We generally try to make one lesson equal to one
45 to 60 minute class period. However some lessons take multiple days, such as projects or concepts that do not easily
break down into separate lesson plans. Many lessons include time estimates, but these vary based on the age of your
students, their background with the material, and their interests.

29

CS Discoveries Curriculum Guide

DG

More Lesson Plan Features

Ilconography
Within lesson plans you'll | lcons in margin indicate |

. . ~-_1 location in text that a .. .
notice a number of icons "1 calloutrefersto. | Activity (40 mins)
and other kinds of callouts. L =

— k_'g Remarks

Microphone icon and gray

These are intended to give
context about what “mode”

you should be operating in
for each part of the lesson.

Sometimes you speak
directly to the students, and
other times you need to
understand the goal of a
discussion or give guidance
during an activity.

Interactive Code

Studio View

Lesson plans give you an
interactive view into all of
the text content and
instructions students see on
the platform.

With this view, you can
quickly browse through
what students see for each
level in the lesson without
having to step through each
level on Code Studio.

This should greatly speed
up your preparations for
class or serve as fast way
to remind yourself what’s in
each lesson.

remarks intended for
direct instruction. Read
aloud or paraphrase.

bar denote language or

|—>[:I; Guide: Encoding Color Images

Pencil icon and teal bar
indicate instruction that
parallels a lesson

gives teacher instruction
through each step of a
student activity guide.

resource. For example, it

Numbered levels are
typically a sequence of
exercises.

“Named" levels typically
provide overview of
content.

Levels with names have
teaching commentary
auto-expanded. You can
click on Student Overview
to see what the student
sees for this level.

L. Levels B2 | 05 | 04 | jcuck tsbs to sea student vi

J—' [#) Debugging with Console.log m Stu«n;ﬁnﬂw

tudio [

[2) Unit 5 Lesson 2 Introduction Student Overview

Yiew on C

Teaching Tips
This is a lovel that might be worth pausing on. There are a fow things: that are important to reinforoe:

« Every programming language has some way of display simple plaintext output

« Printing io the console is a very common lechnique nod only for debugging but also as an aid in
Drogram congtruchion and development

= In other wonds, you can use console.log 10 send maessages o yourself to verly the program is
doing what you think it's doing which helps orevent errors down the line.

Clicking on a numbered
level shows you the
student instructions. You
will also see additional
teaching commentary
pertinent to this level
specifically in the same
view. If you want try the
level click view on Code
Studio in the top right.

Levels os OB | jclick tabs to see student view)
T
View on Code Studio [

Student Instructions

Add onEvent from Design Mode!

Dasign Mode has a shortcut for you 1o add oaEvent) 1o
your code for specific UI Element. it's quite handy

You try I: Add an ovent handie 0.8 buton rom Design :
Maode
et

Design Mode * A Red bution has aiready been added 1o
the app. * In Design Mode click on The bution 1o select L *

PROPEATIES EVINTS

Click tha EVENTS tab and then cick the ink that says et ()
Insert and Show Code * You may change the 1D ¥ you
e P (pa}

30

<o

CS Discoveries Curriculum Guide
D]

Level Types
Informational Levels

Resource Levels

These levels contain instructions, text, or images to help run a class activity. Lesson instructions will indicate
how these levels should be incorporated into the activity. A lesson overview provides a short activity
description and links to documents used throughout the lesson.

Video Levels
Video levels contain a video to be used in the curriculum. Videos typically are hosted in multiple formats,
including a downloadable file, to increase the likelihood of being compatible in a variety of classrooms.

Map Levels

These levels explain a single concept in detail using text, diagrams, images, and external links. Like a map,
students can refer to these levels for guidance as they make their way through a lesson. After the fact they
can be a handy place to go for a quick review.

Active Levels

Programming Levels

These levels include a Code.org programming environment like Web Lab, Game Lab, or App Lab. An
instructions panel explains any new content introduced in the level and provides a checklist of tasks to
complete. Starter code may be provided. Teachers can review their students’ code from the Teacher Panel.

Quick Check Levels
These levels feature a single multiple choice, free response, or matching question. Teachers can view student
responses from the Teacher Panel.

Project Levels

These levels share code with one another but have different instructions. Project levels allow students to build
up projects across a lesson or unit. An alert box (shown below) informs students when they are working in a
project level.

Note: You are on a level that is part of a longer project. Changes made on this level will also appear in other levels in the project.

These levels include a “Submit” button that allows students to submit their work to the teacher. Submission
creates a timestamp and locks edits. Teachers can view student work and submission times from the Teacher
Panel or Teacher Dashboard. Teachers may return a project to students for further edits. Students may also
re-submit a project, generating a new timestamp.

Submittable Levels
==
[suomit |

Submit

Prediction Levels

These levels ask students to make a multiple choice or free-response prediction about the output of a
program. Students are prevented from running code (indicated by a gray “Run” button) until they lock in a
prediction. Teachers can view student predictions from the Teacher Panel.

31

<o

CS Discoveries Curriculum Guide
D]

Assessment and Feedback

Frequent assessment and feedback are critical to ensure that students are actively involved in their own learning and
teachers have evidence that the class is making appropriate progress. Whether it's for adjusting the pace of the class or
measuring student growth and progress, CS Discoveries has incorporated opportunities for assessment and feedback
throughout the course. However, since schools have diverse grading systems, it is left up to the teacher to decide how to
use the assessment resources for grading purposes.

. [~) Puzzle 5 of 12
Checks for Understanding e
redic
Throughout the lessons, teachers have many ways to to _ .
.) In which corner of the screen will the circle be drawn?
quickly gauge whether students have grasped a particular e e———
concept. Almost all activities that students engage in allow for
a teacher to check for understanding.

xPosition 300)

100

Prediction levels ask students to look at a piece of code

and predict what it will do. They are often given before o
content is presented in order to scope students’ exploration
during the learning process. Teachers can monitor students’ ke st o o e
predictions and compare to their later work in the lesson. program.

1L
2
S
4 whatsTheY)
5

O Show grid

Skill-building levels challenge students to complete a small programming task. Teachers have access to all student
work in these levels and can read and run the code that students have produced. Puzzles often include exemplar
solutions for teachers to reference.

Class discussions provide an opportunity for group sense making. These discussions may begin with students writing
down their individual thoughts before sharing with a partner or group.

Quick-check levels include multiple choice or short answer questions. These are usually given after students have had
a chance to explore a concept. They check for common misunderstandings before students move on to the next lesson
or task.

Opportunities for Feedback

Prepare At the end of each lesson, teachers have at least one opportunity
to assess and give feedback on what students have learned.
Students may submit this work online through Code Studio or on

paper.

Submittable levels are Code Studio levels that can be
submitted to a teacher for feedback. Most of these levels come
at the end of a lesson and involve a creation task. Teachers can
use these tasks to assess whether students have mastered the
objectives of the lesson and give students feedback on their
progress.

Activity Guides accompany unplugged lessons in the
curriculum. They include prompts and questions that teachers

ReFlec can use to follow students’ progress through the lesson and
;’z:z:mtzm_ reflection questions that can give insight into what students have
o d learned from the activity.

Journal Questions allow students to reflect on what they have
learned, and what they hope to learn more about.

32

CS Discoveries Curriculum Guide

End of Chapter Projects

Each chapter includes a project that Criteria YesiNo | Comments
incorporates the skills and understandings Uses at least 3 sprites
students have developed. These projects are
designed to assess unit-specific skills and the : :

) i At least one sprite responds to user input
five student practices that thread through the e
entire course.

Updates at least 3 different sprite properties
in the draw loop (eg. sprite.x,

Student-facing rubrics give guidance on SPIitESRale it e b sib L)

the Sk”ls they mUSt demonStrate, Wh||e Uses at least 1 conditional that is triggered
. . . jabl i .

allowing for plenty of choice in how to il

demonstrate what they have learned.

Increment or decrement a variable or sprite
property (eg score = score + 1)

Flexible implementation allows teachers

@
to incorporate different modes of & e I Ll ke---

presentation, such as posters and oral @"@
presentation.

L]
Peer feedback forms prompt students to The World is Waiting I W I s h (T T]
reflect explicitly on the goals of the project,
as We” as praC“Ce effeC“Ve Innovative Strong Beautiful Capable Determined Inspired

°
communication skills and iterative problem W h a t I f
ese

solving.

Standards Mapping

CS Discoveries was written using both the K-12 Framework for Computer Science and the draft CSTA standards as
guidance. Because the revised CSTA standards have not been finalized as of May 2017, we are waiting to publish formal
standards mapping documents for CS Discoveries to ensure that we have an opportunity to address any changes that
may appear in the final draft. Once the CSTA standards have been finalized and published, we will complete a full pass to
articulate, on a unit and lesson level, our mapping to not only the the CSTA standards, but also to select ISTE, Common
Core Math, Common Core ELA, and NGSS standards. Once this mapping has been completed, it will be available in the
lesson plans and at code.org/csd/standards.

33

CS Discoveries Curriculum Guide

©)al
o

Appendix A: Planning Handouts

34

<o
£

CS Discoveries Curriculum Guide n

Building Your Recruitment Plan

Use this document to map out a recruitment plan for your school, looking at the ways different members of your school
team can help recruit and support students.

Course Description. /n your own words, how would you describe this course to a student?

Strategies for Recruiting. How do you plan to recruit students to your course?

Getting Help Recruiting. How can the other members of your school team help to recruit for this course?

School Counselors School Administrators

35

CS Discoveries Curriculum Guide

Build your Action Plan: Getting to Fall

<o
ole

Use the space below to make a plan for preparation you want to complete between now and the start of the school year.

Your open questions

What questions do you have?

Where can you find answers to those
questions?

When do you plan to get answers to
those questions?

Things to explore further

Which topics in the curriculum do you
want to further explore before you
start teaching the course?

Who can you work with in exploring
these topics?

When do you plan to do this
exploration?

36

CS Discoveries Curriculum Guide

B

Pacing and Planning: Instructional Units

Use the space below to document your pacing plan for moving through each of the instructional units and performance

tasks.
What | Duration LU0 ED TR LT d? you Notes or special considerations
plan to start? | plan to finish?
Unit 1 3 weeks
Unit 2 6 weeks
Unit 3 7 weeks
Unit 4 7 weeks
Unit 5 4 weeks
Unit 6 6 weeks

37

CS Discoveries Curriculum Guide

o]0

Appendix B: The Problem Solving
Processes

38

<o

CS Discoveries Curriculum Guide
D]

The Problem Solving Process

Having a strategy for approaching problems can help you develop new insights and come up with new and better
solutions. This is an iterative process that is broadly useful for solving all

kinds of problems.

Define " Prepare

e Determine the problem are you trying to solve
e Identify your constraints
e Describe what success will look like

Prepare
e Brainstorm / research possible solutions
e Compare pros and cons
e Make a plan

™ &
e Put your plan into action

Reflect

e Compare your results to the goals you set while defining the problem
e Decide what you can learn from this or do better next time
e Identify any new problems you have discovered

The Problem Solving Process for Programming
Define
e Read the instructions carefully to ensure you understand the goals

e Rephrase the problem in your own words

e Identify any new skills you are being asked to apply

e Look for other problems you’ve solved that are similar to this one

e |[f there is starter code, read it to understand what it does
Prepare

e Write out an idea in plain English or pseudocode

Sketch out your idea on paper

List what you already know how to do and what you don’t yet know
Describe your idea to a classmate

Review similar programs that you’ve written in the past

Try

Write one small piece at a time

Test your program often

Use comments to document what your code does

Apply appropriate debugging strategies

Go back to previous steps if you get stuck or don’t know whether you've solved the problem

Reflect

e Compare your finished program to the defined problem to make sure you’ve solved all aspects of the problem
Ask a classmate to try your program and note places where they struggle or exhibit confusion

Ask a classmate to read your code to make sure that your documentation is clear and accurate

Try to “break” your program to find types of interactions or input that you could handle better

Identify a few incremental changes that you could make in the next iteration

39

CS Discoveries Curriculum Guide

The Problem Solving Process for Design

Define

Identify potential users
Interview users

Read user profiles
Identify needs and wants

Prepare

Connect needs and wants to specific problems

Research how others have addressed these issues
Brainstorm potential solutions

Discuss pros and cons

Identify the minimum work need to test your assumptions

Draw your product on paper
Develop a low fidelity prototype to communicate your design
Share prototypes with potential end users for feedback

Reflect

Present to stakeholders
Review user feedback

The Problem Solving Process for Data

Define

<o
ole

" Prepare

Decide what problem you are trying to solve or what question you are trying to answer
Make sure you understand your target audience (it could be you!) and what specifically it needs
Identify the parts of your problem you could address with data, and how more information could help

Prepare

Decide what kinds of data you will collect

Decide how you will collect the data and in which format you will collect it

Anticipate possible challenges in data collection and change your plan to account for them
Develop a plan for how you will analyze your data and make sure your data will be useful for that kind of analysis

Try
e Collect your data using the plan you created
e Clean your data by removing errors, unexpected values, and inconsistencies
e Visualize the data by creating tables, graphs, or charts that help you see broad trends in your data
e Interpret the trends and patterns in your visualizations based on your knowledge of the problem
Reflect

Review what you've learned about your question or problem

Decide if what you’ve learned has solved your problem and allows you to make a decision, or if you'll need to go

back to one of the previous steps

40

