

CS Discoveries Curriculum Guide

Table of Contents
Curriculum Values 3

Pedagogical Approach To Our Values 4

Classroom Practices 5
Lead Learner 5
Pair Programming 6
Think-Pair-Share 7
Authentic Choice 7
Unplugged Activities 8
Peer Feedback 8

Student Practices 9
Problem Solving 9
Persistence 9
Creativity 9
Collaboration 9
Communication 9

Problem Solving Processes 10
The Problem Solving Process 10

Course Overview 11
Semester Overviews 13
Unit 1 14
Unit 2 15
Unit 3 17
Unit 4 19
Unit 5 21
Unit 6 23

Required Materials and Supplies 25

Technical Requirements 26

Planning for Your Year 26
Option A: Full Year 26
Option B: Separate Semesters 26
Option C: Single Semester 26
Making Adjustments 26

Navigating the Code.org Website 27
Code.org Site Navigation 27
The Course Overview Page 27
The Curriculum Unit Overview Page 28
The Code.org Lesson Plan Structure 29

Level Types 31
Informational Levels 31
Active Levels 31

1

CS Discoveries Curriculum Guide

Assessment and Feedback 32

Standards Mapping 33

Appendix A: Planning Handouts 34
Building Your Recruitment Plan 35
Build your Action Plan: Getting to Fall 36
Pacing and Planning: Instructional Units 37

Appendix B: The Problem Solving Processes 38
The Problem Solving Process 39
The Problem Solving Process for Programming 39
The Problem Solving Process for Design 40
The Problem Solving Process for Data 40

2

CS Discoveries Curriculum Guide

 Curriculum Values

While Code.org offers a wide range of curricular materials across a wide range of ages, the following values permeate
and drive the creation of every lesson we write.

Computer Science is Foundational for Every Student
We believe that computing is so fundamental to understanding and participating in society that it is valuable for every
student to learn as part of a modern education. We see computer science as a liberal art, a subject that provides students
with a critical lens for interpreting the world around them. Computer science prepares all students to be active and
informed contributors to our increasingly technological society whether they pursue careers in technology or not.
Computer science can be life-changing, not just skill training.

Teachers in Classrooms
We believe students learn best with the help of an empowered teacher. We design our materials for a classroom setting
and provide teachers robust supports that enable them to understand and perform their critical role in supporting student
learning. Because teachers know their students best, we empower them to make choices within the curriculum, even as
we recommend and support a variety of pedagogical approaches. Knowing that many of our teachers are new to
computer science themselves, our resources and strategies specifically target their needs.

Student Engagement and Learning
We believe that students learn best when they are intrinsically motivated. We prioritize learning experiences that are
active, relevant to students’ lives, and provide students authentic choice. We encourage students to be curious, solve
personally relevant problems and to express themselves through creation. Learning is an inherently social activity, so we
interweave lessons with discussions, presentations, peer feedback, and shared reflections. As students proceed through
our pathway, we increasingly shift responsibility to students to formulate their own questions, develop their own solutions,
and critique their own work.

Equity
We believe that acknowledging and shining a light on the historical inequities within the field of computer science is critical
to reaching our goal of bringing computer science to all students. We provide tools and strategies to help teachers
understand and address well-known equity gaps within the field. We recognize that some students and classrooms need
more supports than others, and so those with the greatest needs should be prioritized. All students can succeed in
computer science when given the right supports and opportunities, regardless of prior knowledge or privilege. We actively
seek to eliminate and discredit stereotypes that plague computer science and lead to attrition of the very students we aim
to reach.

Curriculum as a Service
We believe that curriculum is a service, not just a product. Along with producing high quality materials, we seek to build
and nourish communities of teachers by providing support and channels for communication and feedback. Our products
and materials are not static entities, but a living and breathing body of work that is responsive to feedback and changing
conditions. To ensure ubiquitous access to our curriculum and tools, they are web-based and cross-platform, and will
forever be free to use and openly licensed under a Creative Commons license.

3

CS Discoveries Curriculum Guide

 Pedagogical Approach To Our Values

When we design learning experiences, we draw from a variety of teaching and learning strategies all with the goal of
constructing an equitable and engaging learning environment.

Role of the Teacher
We design curriculum with the idea that the instructor will act as the lead learner. As the lead learner, the role of the
teacher shifts from being the source of knowledge to being a leader in seeking knowledge. The lead learner’s mantra is: “I
may not know the answer, but I know that together we can figure it out.” A very practical residue of this is that we never
ask a teacher to lecture or offer the first explanation of a CS concept. We want the class activity to do the work of
exposing the concept to students, allowing the teacher to shape meaning from what the students have experienced. We
also expect teachers to act as the curator of materials. Finally, we include an abundance of materials and teaching
strategies in our curricula - too many to use at once - with the expectation that teachers have the professional expertise to
determine how to best conduct an engaging and relevant class for their own students.

Discovery and Inquiry
We take great care to design learning experiences in which students have an active and equal stake in the proceedings.
Students are given opportunities to explore concepts and build their own understandings through a variety of physical
activities and online lessons. These activities form a set of common lived experiences that connect students (and the
teacher) to the course content and to each other. The goal is to develop a common foundation upon which all students in
the class can construct their understanding of computer science concepts, regardless of prior experience in the discipline.

Materials and Tools
Our materials and tools are specifically created for learners and learning experiences. They focus on foundational
concepts that allow them to stand the test of time, and they are designed to support exploration and discovery by those
without computer science knowledge. This allows students to develop an understanding of these concepts through “play”
and experimentation. From our coding environments to our non-coding tools and videos, all our resources have been
engineered to support the lessons in our curriculum, and thus our philosophy about student engagement and learning. In
that vein, our videos can be a great tool for sensemaking about CS concepts and provide a resource for students to return
to when they want to refresh their knowledge. They are packed with information and “star” a diverse cast of presenters
and CS role models.

Creation and Personal Expression
Many of the projects, assignments, and activities in our curriculum ask students to be creative, to express themselves,
and then to share their creations with others. While certain lessons focus on learning and practicing new skills, our goal is
always to enable students to transfer these skills to creations of their own. Everyone seeks to make their mark on society,
including our students, and we want to give them the tools they need to do so. When computer science provides an outlet
for personal expression and creativity, students are intrinsically motivated to deepen the understandings that will allow
them to express their views and carve out their place in the world.

The Classroom Community
Our lessons almost always call for students to interact with other students in the class in some way. Whether learners are
simply conferring with a partner during a warm up discussion, or engaging in a long-term group project, our belief is that a
classroom where students are communicating, solving problems, and creating things is a classroom that not only leads to
active and better learning for students, but also leads to a more inclusive classroom culture in which all students share
ideas and listen to ideas of others. For example, classroom discussions usually follow a Think-Pair-Share pattern; we ask
students to write computer code in pairs; and we strive to include projects for teams in which everyone must play a critical
role.

4

CS Discoveries Curriculum Guide

 Classroom Practices

The classroom practices for CS Discoveries are different strategies that are used repeatedly in many different lessons and
units. These six classroom practices are at the core of the ways the curriculum is designed as we believe these are best
practices that lead to positive classroom culture and ultimately student learning.

The 6 Main Classroom Practices of CS Discoveries:

● Lead Learner
● Pair Programming
● Think-Pair-Share
● Authentic Choice
● Unplugged Activities
● Peer Feedback

Lead Learner

What is it?
The curriculum has been written with the idea that the instructor will act as the lead learner. As the lead learner your role
shifts from being the source of knowledge to being a leader in seeking knowledge. The lead learner’s mantra is: “I may not
know the answer, but I know that together we can figure it out.” The philosophy of the lead learner is that you don’t have
to be an expert on everything; you can start teaching CS Discoveries knowing what you already know, and learn
alongside your students. To be successful with this style of teaching and learning, the most important things are modeling
and teaching how to learn.

How does it connect to the curriculum?
One of the Code.org curriculum values is developing teachers who are new to computer science. In order to support those
teachers, the curriculum is set up to create an engaging and relevant class that helps students uncover and develop the
knowledge they need. This makes it possible for a teacher to lead the course without knowing all of the answers at first,
as long as they embrace the lead learner role. In addition, it is not possible to have complete command over every
rapidly-changing facet of computer science, no matter how much experience you have. Rather than feeling daunted, the
lead learner welcomes this fact.

We believe that the lead learner technique represents good teaching practice in general. Acting as the lead learner is an
act of empathy toward your students and the challenges they face in learning material for the first time. One important job
of the teacher in the CS Discoveries classroom is to model excitement about investigating how things work by asking
motivating questions about why things work the way they do, or are the way they are. With your guidance, students will
learn how to hypothesize; ask questions of peers; test, evaluate, and refine solutions collaboratively; seek out resources;
analyze data; and write clear and cogent code.

How do I use it?

● Allow students to dive into an activity without presenting all the content first
● Encourage students to rely on each other for support
● Don’t give the answer right away, even if you know it
● Feel open to making mistakes in front of students so that they see it is part of the learning process
● Ask students questions that direct their attention toward the issue to investigate without giving away what they

need to change
● Model the steps you would go through as a learner of a new subject. Explain the different questions you ask

yourself along the way and the ways you go about finding answers

5

CS Discoveries Curriculum Guide

Pair Programming

What is it?
Pair programming is a technique in which two programmers work together at one computer. One, the driver, writes code
while the other, the navigator, directs the driver on the design and setup of the code. The two programmers switch roles
often. Pair programming has been shown to:

● improve computer science enrollment, retention, and students' performance
● increase students' confidence
● develop students' critical thinking skills
● introduce students to the "real world" working environment

How does it connect to the curriculum?
In CS Discoveries there are many lessons on the computer (plugged lessons) during which students develop
programming skills through online progressions. Pair programming can help to foster a sense of camaraderie and
collaboration in your classroom during sets of plugged lessons. It has been shown to increase the enrollment, retention,
and performance of students in computer science classes. It promotes diversity in the classroom by reducing the the
so-called "confidence gap" between female and male students, while increasing the programming confidence of all
students.

How do I use it?
To get students pair programming:

1. Form pairs
2. Give each pair one computer to work on
3. Assign roles
4. Have students start working
5. Ensure that students switch roles at regular

intervals (every 3 to 5 minutes)
6. Ensure that navigators remain active

participants

It can be hard to introduce pair programming after
students have worked individually for a while, so we
recommend that teachers start with pair programming
in the first few plugged lessons. Just like any other classroom technique, you may not want to use this all the time as
different types of learners will respond differently to working in this context. Once you have established pair programming
as a practice early on, it will be easier to come back to later.

Resources
Code.org also has a feature to help both students get “credit” on their accounts for the work they do together. Check out
the blog on Pair Programming: teacherblog.code.org/post/147349807334/try-pair-programmingtrack-the-progress-of

Videos (Created for CS Fundamentals, but still applicable:

● For Teachers: youtu.be/sxToW3ixrwo
● For Students: youtu.be/vgkahOzFH2Q

The National Center for Women & Information Technology (NCWIT) has a great resource about the benefits of pair
programming. Check it out at: www.ncwit.org/resources/pair-programming-box-power-collaborative-learning

6

http://teacherblog.code.org/post/147349807334/try-pair-programmingtrack-the-progress-of
https://youtu.be/sxToW3ixrwo
https://youtu.be/vgkahOzFH2Q
https://www.ncwit.org/resources/pair-programming-box-power-collaborative-learning

CS Discoveries Curriculum Guide

Think-Pair-Share

What is it?
Think-Pair-Share is a three part activity where students are presented with a problem or task to work on.

Think: First, students work individually. Working individually gives students the opportunity to collect their thoughts
before communicating them with others. They should write down their thoughts in a journal for later sharing.

Pair: Once students have had time to work individually, they then enter the “Pair” stage where they work with a small
group. These groups can consist of two or three students. The group discusses the thoughts each member collected
during the “Think” stage. The goal is for students to engage in a low-risk discussion where they get a chance to share
their ideas with others. This activity is especially useful in the early stages of developing collaborative skills such as
attentive listening to a partner.

Share: Finally, the groups will share out some of the ideas they discussed to the whole class and the discussion will
continue as needed in the whole group setting. This allows major ideas to bubble up to the whole group, where
everyone can hear and benefit from them.

How does it connect to the curriculum?
Almost every lesson in the CS Discoveries curriculum involves some kind of discussion that uses a version of
Think-Pair-Share. It is one of the most common practices used for warm ups and wrap ups. Think-Pair-Share is used for
these discussions as it gives students time to think on their own and engage with the content before talking to someone
else. When students talk to their partner it should be a low risk environment to try out an idea. It also allows everyone to
play a part in the discussion, even if they don’t like talking in the whole class environment.

How do I use it?

● Whenever you are given a prompt, consider giving students time to work individually and then with a partner
before bringing the discussion or creation to the whole class.

● View Think-Pair-Share as a way for the class to learn from each other as much as possible. Keep your lead
learner hat on and direct the conversation without giving away answers or cutting off the conversation too early.

Authentic Choice

What is it?
Authentic choice is the practice of allowing students to decide on the focus of their creation when they are working on a
creation. This can be scoped in different ways with different projects, but the central point is to allow students to work on
something they are personally invested in.

How does it connect to the curriculum?
In the curriculum, we give students many opportunities to work on projects that we hope will feel personally relevant.
There is often a focus for the project, but the way it could be implemented leaves room for students to put their personal
stamp on the creation. In addition, we encourage teachers to help students adapt projects to their interests when possible.

How do I use it?

● Give students time to get creative and find something they are passionate about in the project that they are
working on

● Encourage students to find personally relevant contexts for the work they do
● Try to keep the projects as open to students’ interests as possible while still keeping them focused on the learning

at hand

7

CS Discoveries Curriculum Guide

Unplugged Activities

What is it?
In Code.org curriculum, we refer to activities
where students are not on the computer as
unplugged lessons. Ones where they are on
the computer are called plugged lessons.

How does it connect to the
curriculum?
Unplugged activities are more than just an
alternative for the days when the computer lab
is full. They are intentionally-placed kinesthetic
opportunities that help students digest
complicated concepts in ways that relate to
their own lives. When we write the curriculum,
we plan the progression of unplugged and plugged lessons to build on each other. Often something that is done in an
unplugged environment is setting the stage for or reviewing a concept done in a plugged environment. Both are vital
pieces of the curriculum as they build student knowledge and understanding in different ways. In addition, unplugged
lessons can help build and maintain a collaborative environment in your classroom. An unplugged environment also can
be a good way to check for student understanding.

How do I use it?

● Don’t skip these lessons!
● Try to give the lessons in the order they were written in as best as possible
● Help students make sense of how the activity connects to the concepts they are learning in earlier and later

lessons
● Call back to relevant unplugged activities during plugged lessons

Peer Feedback

What is it?
Peer feedback is the practice where students give each other feedback on work they have done. The feedback is meant
to provide opportunities for students to learn from each other, both by seeing ways others approached the same problem
and by incorporating feedback to improve their own work.

How does it connect to the curriculum?
Throughout the CS Discoveries curriculum, there are many activities that are structured moments for students to give
each other peer feedback. We support these activities with structured guides for the peer feedback process. Many of the
guides follow a similar format where students are first given the opportunity to express what they would like feedback on.
Then the peer reviewer gives feedback on some standard questions, often related to the goals of the work, as well as
leaving some free response feedback using the sentence starters “I like,” “I wish,” and “What if.” Finally, students are
encouraged to reflect on the feedback they received and think about ways to incorporate it in the future.

How do I use it?

● Create a structured peer feedback process
● Decide who is giving who feedback
● Allow students to share some areas that they would like feedback on
● Give students time to provide feedback
● Give students time to respond and incorporate feedback
● Provide examples of constructive feedback
● Have students use sentence starters for their feedback such as: I like, I wish, What if
● Treat this as a skill that students develop throughout the course and which they will need to be taught.

8

CS Discoveries Curriculum Guide

Student Practices

Students in CS Discoveries work in a wide array of contexts, but these experiences are tied together by a core set of
practices they develop throughout the course. These student practices provide coherence and serve as helpful reminders
of the high-level skills and dispositions they should be continually developing. Throughout the curriculum you will find
reminders of moments when students can reflect on this development, and all major projects include an opportunity for
student reflection on their growth in each practice.

Problem Solving
Use a structured problem solving process to help address new problems
View challenges as solvable problems
Break down larger problems into smaller components

Persistence
Value and expect mistakes as a natural and productive part of problem solving
Continue working towards solutions in spite of setbacks
Iterate and continue to improve partial solutions

Creativity
Incorporate your own interests or ideas into your work
Experiment with new ideas and consider multiple possible approaches
Extend or build upon the ideas and projects of others

Collaboration
Work with others to develop solutions that incorporate all contributors
Mediate disagreements and help teammates agree on a common solution
Actively contribute to the success of group projects

Communication
Structure your work so that it can be easily understood by others
Consider the perspective and background of your audience when presenting your work
Provide and accept constructive feedback in order to improve your work

9

CS Discoveries Curriculum Guide

Problem Solving Processes

Structured problem solving, through our Problem Solving Process, is a tool for student growth and development which has
been woven throughout the entire course. While students learn the generalized Problem Solving Process in Unit 1, we
have also developed versions of the process that more clearly articulate what each step looks like in the context of
Programming, Design, and Data. The detailed problem solving processes for Programming, Design, and Data can be
found in Appendix B.

Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6

The Problem
Solving Process

The Problem
Solving Process
for Programming

The Problem
Solving Process
for Programming

The Problem
Solving Process
for Design

The Problem
Solving Process
for Data

The Problem
Solving Process
for Programming

The Problem Solving Process
Having a strategy for approaching problems can help you develop new insights and come up with new and better
solutions. This is an iterative process that is broadly useful for solving all kinds of problems.

Define

● Determine the problem you are trying to solve
● Identify your constraints
● Describe what success will look like

Prepare

● Brainstorm / research possible solutions
● Compare pros and cons
● Make a plan

Try

● Put your plan into action

Reflect

● Compare your results to the goals you set while defining the problem
● Decide what you can learn from this or do better next time
● Identify any new problems you have discovered

10

CS Discoveries Curriculum Guide

 Course Overview

What is Computer Science Discoveries?
Computer Science Discoveries (CS Discoveries) is an
introductory computer science course that empowers students to
create authentic artifacts and engage with computer science as
a medium for creativity, communication, problem solving, and
fun.

Designed with equity in mind
CS Discoveries is designed from the ground up to be an
accessible and engaging course for all students, regardless of
background or prior experience. It provides students
opportunities to engage with culturally and personally relevant
topics in a wide variety of contexts and aims to show all students
that CS is for them.

Focus on creation
We know that giving students agency in their learning is a powerful tool for creating fun, engaging, and lasting learning
experiences. CS Discoveries focuses on the skills that enable students to create and express themselves in a variety of
contexts and media. Whether they are developing their own website, designing an app, building a game, or creating a
physical computing device, students are empowered to bring their ideas to life.

Completing a K-12 pathway
CS Discoveries is designed to fit naturally
between our CS Fundamentals courses and
our CS Principles course. While each of
these courses is designed to be an
age-appropriate entry point to computer
science, students with previous experience
will find many new topics to explore, and
they will revisit familiar topics in novel and
more challenging contexts.

Elementary Middle High

K 1 2 3 4 5 6 7 8 9 10 11 12

CS Fundamentals

 CS Discoveries

 CS Principles

Supports for new-to-CS teachers
CS Discoveries is specifically designed to support new-to-CS teachers. The curriculum includes detailed lesson plans
and frequent teaching tips. The accompanying forum is an active community that teachers can use to discuss their
practice and find additional resources. Teachers can also apply for our professional learning program for further
support.

Flexible implementation
CS Discoveries is appropriate for 6th to 10th
grade classrooms and can be used in either
middle or high school. The two semesters build
on each other, allowing the course to be taught
as a single semester, two sequential semesters,
a full-year course, or even integrated into
existing technology classes.

11

CS Discoveries Curriculum Guide

Professional Learning Program

Teachers implementing CS Discoveries as a semester or full-year
course can apply to participate in a one-year professional learning
program. Participation is not required to use any course materials.
The professional learning program includes:

● Summer Workshop: A 5-day, in-person, workshop held
during the summer, designed to introduce core teaching
practices and CS concepts from the curriculum (Travel may
be required)

● School Year Workshops: Follow-up one-day workshops
typically held on the weekends, where teachers receive
support on upcoming units and have a chance to collaborate
with other teachers

● Online Modules: Unit-specific teaching supports to use while preparing to teach the lessons
● Forum: An active online community where teachers can ask questions, find resources, and collaborate

Powerful tools with a high ceiling

CS Discoveries introduces students to tools and programming languages that are accessible for beginners while offering
more advanced students opportunities to create sophisticated projects. Using Code.org’s existing App Lab programming
environment and our new programming environment, Game Lab, students will be able to transition from blocks to typed
code at their own pace while learning JavaScript. Students will also develop maker skills through the study of physical
computing at a very accessible cost. All of the tools below are integrated directly into the Code.org website, allowing
teachers to have visibility into all student work and progress.

● Web Lab — A browser-based tool for creating and publishing HTML and CSS web sites

● Game Lab — A browser-based JavaScript programming environment designed to create sprite-based drawings,
animations and games, with the ability to freely switch between programming in blocks or text

● App Lab — A browser-based JavaScript programming environment for creating interactive apps, with the ability
to freely switch between programming in blocks or text

● Maker Toolkit — A collection of commands that extends App Lab’s capabilities to allow students to easily
program the Circuit Playground and many other physical computing devices directly from App Lab

● Circuit Playground — Adafruit’s new low-cost Arduino-based microcontroller featuring multiple integrated

sensors and output devices

12

CS Discoveries Curriculum Guide

Semester Overviews

Semester 1 - Exploration and Expression

Overview

The first semester of CS Discoveries introduces students to computer science as a vehicle for problem solving,
communication, and personal expression. As a whole, this semester focuses on the visible aspects of computing
and computer science, and encourages students to see where computer science exists around them and how they
can engage with it as a tool for exploration and expression.

Unit 1:
Problem Solving

Students learn the problem-solving process, the input-output-store-process model of a
computer, and how computers help humans solve problems. Students end the unit by
proposing their own app to solve a problem.

Unit 2:
Web Development

Students learn to create websites using HTML and CSS inside Code.org’s Web Lab
environment. Throughout the unit students consider questions of privacy, and
ownership on the Internet. Students develop a personal website throughout the unit.

Unit 3:
 Animations and Games

Students learn many fundamental programming constructs and practices in the
JavaScript programming language while developing animations and games in
Code.org’s Game Lab environment. Students end the unit by designing their own
animations and games.

Semester 2 - Innovation and Impact

Overview

Where the first semester centers on the immediately observable and personally applicable elements of computer
science, the second semester asks students to look outward and explore the impact of computer science on society.
Students will see how a thorough user-centered design process produces a better application, how data is used to
address problems that affect large numbers of people, and how physical computing with bare circuit boards allows
computers to collect input and return output in a variety of ways.

Unit 4:
The Design Process

Students apply the problem-solving process to the problems of others, learning to
empathize with the needs of a user and design solutions to address those needs.
During the second half of the unit students form teams to prototype an app of their own
design, first on paper and eventually in Code.org’s App Lab environment.

Unit 5:
Data and Society

Students explore different systems used to represent information in a computer and
the challenges and tradeoffs posed by using them. In the second half of the unit
students learn how collections of data are used to solve problems and how computers
help to automate the steps of this process.

Unit 6:
Physical Computing

Students use Code.org’s App Lab environment, in conjunction with the Adafruit Circuit
Playground, to explore the relationship between hardware and software. Throughout
the unit, students develop prototypes that mirror existing innovative computing
platforms, before ultimately designing and prototype one of their own.

13

CS Discoveries Curriculum Guide

Unit 1

Overview

Unit 1 is a highly interactive and collaborative introduction to the field of computer
science, as framed within the broader pursuit of solving problems. Through a series of
puzzles, challenges, and real world scenarios, students are introduced to a problem
solving process that they will return to repeatedly throughout the course. Students then
learn how computers input, output, store, and process information to help humans solve
problems. The unit concludes with students designing an application that helps solve a
problem of their choosing.

Core Frameworks

● Problem Solving Process
● What is a Computer? - Input, Output, Storage and Processing

Attitudinal Goals

Students will...

● Build a collaborative classroom environment
● Develop positive attitudes toward computer science

(relevant, collaborative, fun and empowering)

Big Questions

Chapter 1 - The Problem Solving Process

● What strategies and processes can I use to become a more
effective problem solver?

Chapter 2 - Computers and Problem Solving

● How do computers help people to solve problems?
● How do people and computers approach problems differently?
● What does a computer need from people in order to solve problems effectively?

Lessons and Pacing

14

CS Discoveries Curriculum Guide

Unit 2

Overview

In Unit 2, students are empowered to create and share the content on their own web pages. They begin by thinking about
the role of the web and how it can be used as a medium for creative expression. As students develop their pages and
begin to see themselves as programmers, they are encouraged think critically about the impact of sharing information
online and how to be more critical content consumers. They are also introduced to problem solving as it relates to
programming while they learn valuable skills such as debugging, commenting, and structure of language. At the
conclusion of the unit, students will have created a personal website they can publish and share.

Core Frameworks

● Problem Solving Process for Programming
● How to Set Up a Web Page? - Content, Structure, Style
● HTML and CSS
● Digital Citizenship

Attitudinal Goals

Students will...

● View computer science as a form of expression
● See themselves as programmers
● Develop as thoughtful creators and critical online consumers

Big Questions

Chapter 1 - Web Content and HTML

● How can text communicate content and structure on a web page?
● Why do people create websites?
● How can I incorporate content I find online into my own webpage?
● What strategies can I use when coding to find and fix issues?

Chapter 2 - Styling and CSS

● How do I modify the appearance and style of my web pages?
● How do I safely and appropriately make use of the content published on the Internet?

15

CS Discoveries Curriculum Guide

Tool - Web Lab

Description: Web Lab is a browser-based text-editor for building web pages in HTML and CSS. It features a text-editor
with many helpful tools for creating and debugging HTML and CSS code, as well as a live preview of the web page that
updates in real time and the ability to publish the completed web page to its own unique URL. Try the tool at
studio.code.org/p/weblab.

Lessons and Pacing

16

CS Discoveries Curriculum Guide

Unit 3

Overview

In Unit 3, students build on their coding experience as they create programmatic images, animations, interactive art, and
games. Starting off with simple, primitive shapes and building up to more sophisticated sprite-based games, students
become familiar with the programming concepts and the design process computer scientists use daily. They then learn
how these simpler constructs can be combined to create more complex programs. In the final project, students develop a
personalized, interactive program. Along the way, they practice design, testing, and iteration, as they come to see that
failure and debugging are an expected and valuable part of the programming process.

Core Frameworks

● Problem Solving Process for Programming
● Sequencing and program flow
● Abstraction in programming
● Common programming structures: variables, conditionals, functions
● JavaScript

Attitudinal Goals

Students will...

● View programming as fun, creative, and expressive
● Understand that complex programs are constructed from simple concepts
● Feel that programs can be read and understood

Big Questions

Chapter 1 - Images and Animations

● What is a computer program?
● What are the core features of most programming languages?
● How does programming enable creativity and expression?
● Which practices and strategies will help me as I write programs?

Chapter 2 - Building Games

● How do software developers manage complexity and scale?
● How can programs be organized so that common problems only need to be solved once?
● How can I build on previous solutions to create even more complex behavior?

17

CS Discoveries Curriculum Guide

Tool - Game Lab

Description: Game Lab is a programming
environment for developing animations and
games using JavaScript. Students create
sprites - characters whose appearance,
movement, and interactions can be controlled
through code. A preloaded library of images
and sounds and a full-featured pixel editor
allows students to customize the look of their
sprites. Using Game Lab, students learn
fundamental programming constructs while
being given the freedom to create their own
virtual worlds. Students can program in either
blocks or text and instantly switch between
either mode. Game Lab allows curriculum to
use a scoped toolbox of commands that
focuses attention on the specific blocks or concepts being introduced in that lesson. In addition embedded support tools to
help students track down errors in their code. Try the tool at code.org/gamelab.

Lessons and Pacing

18

CS Discoveries Curriculum Guide

Unit 4

Overview

In Unit 4, students transition away from thinking about computer science as a tool to solve their own problems and begin
to examine the broader social impacts of computing. Through a series of design challenges, students are asked to
consider and understand the needs of others while developing a solution to a problem. The second half of the unit
consists of an iterative team project, during which students have the opportunity to identify a need that they care about,
prototype solutions both on paper and in App Lab, and test their solutions with real users to get feedback and drive further
iteration.

Core Frameworks

● The Problem Solving Process for Design
● Low Fidelity Prototyping
● User Testing

Attitudinal Goals

Students will...

● View computer science as a tool for social impact
● Value empathy and understanding of a user
● Appreciate the many roles in software development

Big Questions

Chapter 1: User Centered Design

● How do computer scientists identify the needs of their users?
● How can we ensure that a user's needs are met by our designs?
● What processes will best allow us to efficiently create, test, and iterate upon our designs?

Chapter 2: App Prototyping

● How do teams effectively work together to develop software?
● What roles beyond programming are necessary to design and develop software?
● How do designers incorporate feedback into multiple iterations of a product?

19

CS Discoveries Curriculum Guide

Tool - App Lab

Description: App Lab is a programming environment for
developing applications in JavaScript. A drag-and-drop
editor allows students to add and edit page elements without
having to write the associated HTML and CSS. Working in
either blocks or text, students programmatically define the
behavior of these page elements. The scoped toolbox of
commands focuses attention on the specific blocks or
concepts being introduced in that lesson. The embedded
support tools help students track down errors in their code.
Thanks to these features App Lab is particularly well-suited
for quickly prototyping simple apps.Try the tool at
code.org/applab.

Lessons and Pacing

20

CS Discoveries Curriculum Guide

Unit 5

Overview

This unit encourages students to think about the importance of data in solving problems and highlights how computers
can help in this process. The first chapter explores different systems used to represent information in a computer and the
challenges and tradeoffs posed by using them. In the second chapter, students learn how collections of data are used to
solve problems, and how computers help to automate the steps of this process. The unit concludes by asking students to
consider how the data problem solving process can be applied to an area of their choosing.

Core Frameworks

● The Problem Solving Process for Data
● Information Representation
● Binary Systems

Attitudinal Goals

Students will...

● View data as an important tool for solving problems
● Understand the importance of representation systems in

computing
● Appreciate the advantages and disadvantages of

automated decision making

Big Questions

Chapter 1: Representing Information

● Why is representation important in problem solving?
● What features does a representation system need to be useful?
● What is necessary to create useable binary representation

systems?
● How can we combine systems together to get more complex

information?

Chapter 2: Solving Data Problems

● How does data help us to solve problems?
● How do computers and humans use data differently?
● What parts of the data problem solving process can be

automated?
● What kinds of problems do computers use data to solve in the

real world?

21

CS Discoveries Curriculum Guide

Tool

The majority of this unit features unplugged lessons, but in a few instances students use online tools such as a
spreadsheet tool of the teacher’s choice, a survey tool of the teacher’s choice, and the Code.org Pixelation Widget.

Lessons and Pacing

22

CS Discoveries Curriculum Guide

Unit 6

Overview

In Unit 6, students further develop their programming skills while exploring the role of hardware platforms in computing.
Harkening back to the Input and Output elements of the Input/Storage/Processing/Output model for computing, students
examine current and “smart” devices to understand the ways in which different sensors can provide more effective input
and output than the traditional keyboard, mouse, and monitor. Using App Lab and Adafruit’s Circuit Playground, students
develop programs that utilize the same hardware inputs and outputs that they saw in the smart devices they explored
earlier, and they get to see how a simple rough prototype can lead to a finished product. The unit concludes with a design
challenge that asks students to use the Circuit Playground as the basis for an innovation of their own design.

Core Frameworks

● Problem Solving Process for Programming
● Event-driven programming
● Hardware input and output
● Physical prototyping
● JavaScript

Attitudinal Goals

Students will...

● View hardware as an approachable and fun topic in
computing

● Believe that anyone can contribute to innovation
● Feel equipped to use physical computing to solve problems

Big Questions

Chapter 1: Hardware Output

● How does software interact with hardware?
● How can computers communicate information with simple hardware outputs?
● How can programs be made to repeat tasks?

Chapter 2: Hardware Input

● How can computers sense and respond to their environment?
● How can complex real-world information be represented in code?
● How can simple hardware be used to develop innovative new products?

23

CS Discoveries Curriculum Guide

Tool - App Lab with Maker Toolkit

Description: The Maker Toolkit is a set of additional commands available in App Lab that allow you to communicate with
a Circuit Playground plugged into USB. Using the same drag-and-drop editor that students have become comfortable with
in App Lab and Game Lab, students can turn on LEDs, read sensors, and write programs that use physical hardware for
user input and output. By integrating these commands. App Lab makes it simple to quickly prototype apps that combine
hardware and software without the overhead of installing additional software or worrying about wiring and electronics. Try
the tool at code.org/applab.

Lessons and Pacing

24

CS Discoveries Curriculum Guide

 Required Materials and Supplies

One potentially significant cost to consider when teaching this course is printing. Many lessons have handouts that are
designed to guide students through activities. While it is not required that all of these handouts be printed, many were
designed with print in mind and we highly recommend their use.

Beyond printing, some lessons call for typical classroom supplies and manipulatives such as:

● Student journal (See below for more details)
● Poster paper
● Markers, colored pencils, etc.
● Scissors
● Scrap paper
● Glue or tape
● Post-it notes (or similar sized scrap paper)
● Rulers or a straight edge of some kind
● Index cards (or similar sized scrap paper)

The following items are called for in certain units:

Unit Materials Alternatives

Unit 1

Aluminum foil
Container for water
Pennies

The pennies can be replaced with
some other kind of weight of the
same size.

Unit 1

Playing cards (1 deck per 8 students) None

Unit 5

Access to a spreadsheeting tool None but there are free options

Unit 6

Classroom set of Circuit Playgrounds
(1 board and micro USB cable for every 2 students)
Check out code.org/circuitplayground for more details.

None - this is the only board
currently supported by the
curriculum.

Journaling:
The curriculum frequently provides opportunities for student journalling. When students are asked to journal, it is done
with the assumption that they will have access their journal writings throughout the course to use as a tool for review and
reflection. Occasionally students are also asked to revisit specific journal prompts. The medium used for journaling can
vary depending on classroom needs. Whichever format you choose should allow for consistent access by both the
student and the teacher. The most common approaches include:

● Physical Notebooks: We recommend that notebooks be kept together and not allowed to leave the classroom.
Composition book style binding tends to be more effective for this purpose, rather than spiral-bound notebooks.

● Digital Documents: Whether you use Google Docs, a blogging platform, or another computer-based tool, the
most important thing to consider is your access as a teacher. Find a tool that allows you consistent access to the
journal so that you may use it to check for understanding.

Journaling prompts are frequently used as a reflective wrap up and to record concepts for later reference. You may also
choose to use your journals for exit tickets, to support think-pair-share discussions, or in lieu of some activity guides.

25

http://code.org/circuitplayground

CS Discoveries Curriculum Guide

Technical Requirements

The course requires and assumes a 1:1 computer lab or setup such that each student has access to an
internet-connected computer every day in class. Each computer must have a modern web browser installed. All of the
course tools and resources (lesson plans, teacher dashboard, videos, student tools, programming environment, etc.) are
online and accessible through a web browser. For more information about tech setup go to: code.org/educate/it

While the course features many “unplugged” activities away from the computer, daily access to a computer is essential for
every student. However, it is not required that students have access to internet-connected computers at home. Because
almost all of the materials are online, internet access at home is certainly an advantage. PDFs of handouts, worksheets
and readings are available on the course website.

Planning for Your Year

CS Discoveries is designed to be taught as a single semester, two semesters over multiple years, or a full year course. In
order to accommodate the inevitable scheduling constraints you may encounter, we’ve also broken each unit into two
chapters, allowing a clean break point roughly halfway through. The following pacing guide gives a rough
recommendation for unit length, assuming that your class meets five days a week for at least 45 minutes per session.

Unit 1 (3-4 weeks) Unit 2 (6-7 weeks) Unit 3 (7-8 weeks)

Chapter 1
1 week

Chapter 2
2 weeks

Chapter 1
4 weeks

Chapter 2
2 weeks

Chapter 1
4 weeks

Chapter 2
3 weeks

Unit 4 (7-8 weeks) Unit 5 (4-5 weeks) Unit 6 (6-7 weeks)

Chapter 1
2 weeks

Chapter 2
5 weeks

Chapter 1
2 weeks

Chapter 2
2 weeks

Chapter 1
4 weeks

Chapter 2
2 weeks

Option A: Full Year

If teaching the course as a full year, we recommend teaching all six units in the order presented.

Option B: Separate Semesters

If teaching the course as two separate semesters, and/or spread out over multiple grade levels, we recommend that you
ensure that students complete the first semester before the second.

Option C: Single Semester

If you only intend to teach a single semester fo CS Discoveries, we recommend that you teach units 1, 2, and 3.

Making Adjustments

The most important thing to consider when making adjustments to the course is that the course was designed to go in
order. There are dependencies between units, which may not be obvious to someone who has not taught the course
before. Skipping over units is not recommended. In addition, something to consider is that each chapter is designed to
culminate in an assessable project. If running up against a deadline, consider planning to stop at a chapter break. You
may want to stop at the chapter break in the middle of a unit or to spend some extra time on an end of chapter project
instead of just scratching the surface of the following unit.

26

http://code.org/educate/it

CS Discoveries Curriculum Guide

Navigating the Code.org Website

Code.org Site Navigation

Log into Code.org with your teacher account. The website header will help you navigate the site:

Once you’ve assigned CS Discoveries to your section, click the tile on your homepage to reach the course overview page.
This is your starting point for lesson planning, professional learning, and all the resources you need to teach the course.

The Course Overview Page
The course overview page will provide quick links to go to the following:

27

CS Discoveries Curriculum Guide

The Curriculum Unit Overview Page

High-level planning should start by looking the unit overview page on curriculum.code.org.

Pacing Calendar
The calendar on the unit overview
page shows the relative “size” of each
lesson and suggests what you might
be able to get through in a week.
Larger projects are marked in purple.

If you finish the set of lessons for a
week early you can absorb the time if
the previous week went long, or start
the next week early, time permitting.

28

CS Discoveries Curriculum Guide

The Code.org Lesson Plan Structure

Every lesson plan has a common structure that should make it easy to find what you need. Planning for a lesson starts by
looking at the overview, then reviewing the core activity to get a deeper sense of what it is and how long it might take.

Lesson Length

Lessons in CS Discoveries are written for a wide variety of classrooms. We generally try to make one lesson equal to one
45 to 60 minute class period. However some lessons take multiple days, such as projects or concepts that do not easily
break down into separate lesson plans. Many lessons include time estimates, but these vary based on the age of your
students, their background with the material, and their interests.

29

CS Discoveries Curriculum Guide

More Lesson Plan Features
Iconography
Within lesson plans you’ll
notice a number of icons
and other kinds of callouts.

These are intended to give
context about what “mode”
you should be operating in
for each part of the lesson.

Sometimes you speak
directly to the students, and
other times you need to
understand the goal of a
discussion or give guidance
during an activity.

Interactive Code
Studio View
Lesson plans give you an
interactive view into all of
the text content and
instructions students see on
the platform.

With this view, you can
quickly browse through
what students see for each
level in the lesson without
having to step through each
level on Code Studio.

This should greatly speed
up your preparations for
class or serve as fast way
to remind yourself what’s in
each lesson.

30

CS Discoveries Curriculum Guide

Level Types

Informational Levels

Resource Levels
These levels contain instructions, text, or images to help run a class activity. Lesson instructions will indicate
how these levels should be incorporated into the activity. A lesson overview provides a short activity
description and links to documents used throughout the lesson.

Video Levels
Video levels contain a video to be used in the curriculum. Videos typically are hosted in multiple formats,
including a downloadable file, to increase the likelihood of being compatible in a variety of classrooms.

Map Levels
These levels explain a single concept in detail using text, diagrams, images, and external links. Like a map,
students can refer to these levels for guidance as they make their way through a lesson. After the fact they
can be a handy place to go for a quick review.

Active Levels

Programming Levels
These levels include a Code.org programming environment like Web Lab, Game Lab, or App Lab. An
instructions panel explains any new content introduced in the level and provides a checklist of tasks to
complete. Starter code may be provided. Teachers can review their students’ code from the Teacher Panel.

Quick Check Levels
These levels feature a single multiple choice, free response, or matching question. Teachers can view student
responses from the Teacher Panel.

Project Levels
These levels share code with one another but have different instructions. Project levels allow students to build
up projects across a lesson or unit. An alert box (shown below) informs students when they are working in a
project level.

Submittable Levels
These levels include a “Submit” button that allows students to submit their work to the teacher. Submission
creates a timestamp and locks edits. Teachers can view student work and submission times from the Teacher
Panel or Teacher Dashboard. Teachers may return a project to students for further edits. Students may also
re-submit a project, generating a new timestamp.

Prediction Levels
These levels ask students to make a multiple choice or free-response prediction about the output of a
program. Students are prevented from running code (indicated by a gray “Run” button) until they lock in a
prediction. Teachers can view student predictions from the Teacher Panel.

31

CS Discoveries Curriculum Guide

 Assessment and Feedback

Frequent assessment and feedback are critical to ensure that students are actively involved in their own learning and
teachers have evidence that the class is making appropriate progress. Whether it’s for adjusting the pace of the class or
measuring student growth and progress, CS Discoveries has incorporated opportunities for assessment and feedback
throughout the course. However, since schools have diverse grading systems, it is left up to the teacher to decide how to
use the assessment resources for grading purposes.

Checks for Understanding
Throughout the lessons, teachers have many ways to to
quickly gauge whether students have grasped a particular
concept. Almost all activities that students engage in allow for
a teacher to check for understanding.

Prediction levels ask students to look at a piece of code
and predict what it will do. They are often given before
content is presented in order to scope students’ exploration
during the learning process. Teachers can monitor students’
predictions and compare to their later work in the lesson.

Skill-building levels challenge students to complete a small programming task. Teachers have access to all student
work in these levels and can read and run the code that students have produced. Puzzles often include exemplar
solutions for teachers to reference.

Class discussions provide an opportunity for group sense making. These discussions may begin with students writing
down their individual thoughts before sharing with a partner or group.

Quick-check levels include multiple choice or short answer questions. These are usually given after students have had
a chance to explore a concept. They check for common misunderstandings before students move on to the next lesson
or task.

Opportunities for Feedback
At the end of each lesson, teachers have at least one opportunity
to assess and give feedback on what students have learned.
Students may submit this work online through Code Studio or on
paper.

Submittable levels are Code Studio levels that can be
submitted to a teacher for feedback. Most of these levels come
at the end of a lesson and involve a creation task. Teachers can
use these tasks to assess whether students have mastered the
objectives of the lesson and give students feedback on their
progress.

Activity Guides accompany unplugged lessons in the
curriculum. They include prompts and questions that teachers
can use to follow students’ progress through the lesson and
reflection questions that can give insight into what students have
learned from the activity.

Journal Questions allow students to reflect on what they have
learned, and what they hope to learn more about.

32

CS Discoveries Curriculum Guide

End of Chapter Projects
Each chapter includes a project that
incorporates the skills and understandings
students have developed. These projects are
designed to assess unit-specific skills and the
five student practices that thread through the
entire course.

Student-facing rubrics give guidance on
the skills they must demonstrate, while
allowing for plenty of choice in how to
demonstrate what they have learned.

Flexible implementation allows teachers
to incorporate different modes of
presentation, such as posters and oral
presentation.

Peer feedback forms prompt students to
reflect explicitly on the goals of the project,
as well as practice effective
communication skills and iterative problem
solving.

Standards Mapping

CS Discoveries was written using both the K-12 Framework for Computer Science and the draft CSTA standards as
guidance. Because the revised CSTA standards have not been finalized as of May 2017, we are waiting to publish formal
standards mapping documents for CS Discoveries to ensure that we have an opportunity to address any changes that
may appear in the final draft. Once the CSTA standards have been finalized and published, we will complete a full pass to
articulate, on a unit and lesson level, our mapping to not only the the CSTA standards, but also to select ISTE, Common
Core Math, Common Core ELA, and NGSS standards. Once this mapping has been completed, it will be available in the
lesson plans and at code.org/csd/standards.

33

CS Discoveries Curriculum Guide

Appendix A: Planning Handouts

34

CS Discoveries Curriculum Guide

Building Your Recruitment Plan
Use this document to map out a recruitment plan for your school, looking at the ways different members of your school
team can help recruit and support students.

Course Description. In your own words, how would you describe this course to a student?

Strategies for Recruiting. How do you plan to recruit students to your course?

Getting Help Recruiting. How can the other members of your school team help to recruit for this course?

School Counselors School Administrators

35

CS Discoveries Curriculum Guide

Build your Action Plan: Getting to Fall
Use the space below to make a plan for preparation you want to complete between now and the start of the school year.

Your open questions

What questions do you have? Where can you find answers to those
questions?

When do you plan to get answers to
those questions?

Things to explore further

Which topics in the curriculum do you
want to further explore before you

start teaching the course?

Who can you work with in exploring
these topics?

When do you plan to do this
exploration?

36

CS Discoveries Curriculum Guide

Pacing and Planning: Instructional Units
Use the space below to document your pacing plan for moving through each of the instructional units and performance
tasks.

What Duration When do you
plan to start?

When do you
plan to finish? Notes or special considerations

Unit 1 3 weeks

Unit 2 6 weeks

Unit 3 7 weeks

Unit 4 7 weeks

Unit 5 4 weeks

Unit 6 6 weeks

37

CS Discoveries Curriculum Guide

Appendix B: The Problem Solving
Processes

38

CS Discoveries Curriculum Guide

The Problem Solving Process
Having a strategy for approaching problems can help you develop new insights and come up with new and better
solutions. This is an iterative process that is broadly useful for solving all
kinds of problems.

Define

● Determine the problem are you trying to solve
● Identify your constraints
● Describe what success will look like

Prepare

● Brainstorm / research possible solutions
● Compare pros and cons
● Make a plan

Try

● Put your plan into action

Reflect

● Compare your results to the goals you set while defining the problem
● Decide what you can learn from this or do better next time
● Identify any new problems you have discovered

The Problem Solving Process for Programming
Define

● Read the instructions carefully to ensure you understand the goals
● Rephrase the problem in your own words
● Identify any new skills you are being asked to apply
● Look for other problems you’ve solved that are similar to this one
● If there is starter code, read it to understand what it does

Prepare

● Write out an idea in plain English or pseudocode
● Sketch out your idea on paper
● List what you already know how to do and what you don’t yet know
● Describe your idea to a classmate
● Review similar programs that you’ve written in the past

Try

● Write one small piece at a time
● Test your program often
● Use comments to document what your code does
● Apply appropriate debugging strategies
● Go back to previous steps if you get stuck or don’t know whether you’ve solved the problem

Reflect

● Compare your finished program to the defined problem to make sure you’ve solved all aspects of the problem
● Ask a classmate to try your program and note places where they struggle or exhibit confusion
● Ask a classmate to read your code to make sure that your documentation is clear and accurate
● Try to “break” your program to find types of interactions or input that you could handle better
● Identify a few incremental changes that you could make in the next iteration

39

CS Discoveries Curriculum Guide

The Problem Solving Process for Design

Define

● Identify potential users
● Interview users
● Read user profiles
● Identify needs and wants

Prepare

● Connect needs and wants to specific problems
● Research how others have addressed these issues
● Brainstorm potential solutions
● Discuss pros and cons
● Identify the minimum work need to test your assumptions

Try

● Draw your product on paper
● Develop a low fidelity prototype to communicate your design
● Share prototypes with potential end users for feedback

Reflect

● Present to stakeholders
● Review user feedback

The Problem Solving Process for Data

Define

● Decide what problem you are trying to solve or what question you are trying to answer
● Make sure you understand your target audience (it could be you!) and what specifically it needs
● Identify the parts of your problem you could address with data, and how more information could help

Prepare

● Decide what kinds of data you will collect
● Decide how you will collect the data and in which format you will collect it
● Anticipate possible challenges in data collection and change your plan to account for them
● Develop a plan for how you will analyze your data and make sure your data will be useful for that kind of analysis

Try

● Collect your data using the plan you created
● Clean your data by removing errors, unexpected values, and inconsistencies
● Visualize the data by creating tables, graphs, or charts that help you see broad trends in your data
● Interpret the trends and patterns in your visualizations based on your knowledge of the problem

Reflect

● Review what you’ve learned about your question or problem
● Decide if what you’ve learned has solved your problem and allows you to make a decision, or if you’ll need to go

back to one of the previous steps

40

