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Middle School CS in Science Standards Crosswalk 
 
Project GUTS has developed a series of modules for Code.org that augment existing lessons in Earth, 
Life and Physical Science curricula.  These Code.org “Computer Science in Science” modules integrate 
computer science through the use, modification, and creation of computer models and simulations within 
the context of modern scientific practice. 
 
Prior to creating these modules (and/or adapting existing modules from the Project GUTS curriculum for 
this purpose), crosswalks between the NRC Framework for K-12 Science Education and CSTA K-12 
Computer Science Standards; and between the Next Generation Science Standards (NGSS) and the 
CSTA K-12 Computer Science Standards were conducted to elucidate the commonalities that could 
serve as the basis for a set of learning outcomes addressed in the Code.org modules. 
 
The first step in creating the crosswalks was to compare the two Standards in terms of the goals, context, 
approach, breadth, depth, content, and practices included.  The document “1. Overview of the CSTA K-12 
CS Standards and NGSS” contains a broad comparison of the Standards.  The document acquaints the 
general audience with the two Standards and serves as a foundation for understanding the crosswalks.  
 
The diagram “2. Computational Science in the CSTA and NGSS” frames Code.org’s Computer Science in 
Science modules in the context of Computational Science, Modeling and Simulation, the Computer 
Science Teachers Association K-12 Computer Science Standards and the Next Generation Science 
Standards.  
 
Document “3. Augmenting Practices” describes how Computational Science practices augment traditional 
scientific and engineering practices.  Table 3-2 of the “Framework for K-12 Science Education: Practices, 
Crosscutting Concepts and Core Ideas” served as a starting point for this document. This document 
provides an introduction to Computational Science for those unfamiliar with the practice. 
 
The “4. Aligning the Framework and CSTA” document contains a preface and the crosswalk between the 
NRC Framework’s Scientific Practices and the CSTA K-12 Computer Science Standards. 
 
The “5. Aligning NGSS DCI ETS and CSTA” document contains a preface and the crosswalk between the 
NGSS Disciplinary Core Idea of Engineering, Technology and Applications of Science (ETS) and the 
CSTA K-12 Computer Science Standards. 
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Comparison of the CSTA K-12 Computer Science Standards and the 
Next Generation Science Standards 
 
This “Overview” is a broad comparison of the goals, context, approach, breadth/depth, and 
content /practices included in the CSTA K-12 Computer Science Standards and the Next 
Generation Science Standards.  
 
n.b.: This document originated from Achieve Inc. and came pre-filled with Achieve’s responses 
to a series of twenty-two questions.  The responses to the questions from the perspective of the 
CSTA K-12 Computer Science Standards were drawn from the CSTA Standards themselves.  
Subsequently, upon review by Achieve, it was determined that questions 4, 6, 11, and 12 could 
be omitted.  After the questions were removed, the remaining questions were renumbered. 
 
 

General Information on Standards Development and Design 
Question #1:  What process was used to develop the standards, including what research and 

background materials (NSES, etc.) are the standards documents based on? 

CSTA :  The CSTA K-12 Computer Science standards were developed in a year-long 
process led by curriculum committee of the CSTA.  Members of the committee 
were assigned to grade bands based on their experience teaching K-12 
Computer Science. Three grouping were made, K-5, 6-8, and 9-12.  Each group 
reviewed the existing K-12 CS standards paying special attention to their 
assigned grade band, and suggested edits and adapted the standards to reflect 
changes in the field. All drafts of the report were informed by feedback from 
many organizations and individuals. In all two rounds of review and three drafts 
were produced. The standards were published on the CSTA Web site 
(http://csta.acm.org) as well as in hardcopy form. The Computer Science 
Standards aim to provide a framework within which state departments of 
education and school districts can revise their curricula to better educate young 
people in this important subject area and thus better prepare students for 
effective citizenship in the 21st century. [CSTA K-12 Computer Science 
Standards, 2011.  Pg 1.] 

NGSS :  The NGSS were developed in a state-led process.  Twenty-six states signed on 
to be Lead State Partners.  The states provided guidance and direction in the 
development of the NGSS to the 41-member writing team, composed of K–20 
educators and experts in both science and engineering.  In addition to six 
reviews by the lead states and their committees, the NGSS were reviewed 
during development by hundreds of experts during confidential review periods 
and tens of thousands of members of the general public during two public 
review periods.  The NGSS content and structure are based on the National 
Research Council’s Framework for K–12 Science Education (2012), and an 
NRC review found that the NGSS were faithful to the Framework.  [NGSS 
Introduction (NGSS Lead States, 2013, Vol. I, p. xvi);  
http://www.nextgenscience.org/lead-state-partners;   
http://www.nextgenscience.org/writing-team;  
http://www.nextgenscience.org/critical-stakeholders;  National Research Council 



            

 

4 
	
  

Review of the Next Generation Science Standards (NGSS Lead States, 2013, 
Vol. I, p. v)] 

Question #2:  Which part(s) of the standards documentation represent the assessable 
components? 

CSTA:  The assessable components are the learning outcomes.  The standards for K–
12 computer science education are presented in a learning objective-based 
format that identifies the specific computer science concepts and skills students 
should achieve at each of the three levels (grades K-6, 6-9, and 9-12). [CSTA K-
12 Computer Science Standards, 2011. Pg. 12.] 

NGSS:  The performance expectations of the NGSS are the assessable components. 
[NGSS Introduction (NGSS Lead States, 2013, Vol. I, p. xviii)] 

 

Question #3: What parts of the science standards are required of all high school students, 
and to what extent do these fit the time restrictions of a typical school year? 

CSTA:  None. 

NGSS:  The NGSS focuses on a limited number of core ideas in science and 
engineering that build coherently over time throughout K–12 in an effort to foster 
a greater depth of understanding on a few fundamental concepts within the 
constraints of the typical school year (Vol. II, pp. 40, 113–115).  These 
standards are expected of all students, including at the high school level, with 
opportunity for accelerated students to continue past the requirement of the 
standards (Vol. II, pp. 25, 31, 114).  However, having expectations for all 
students doesn’t mean that all students will take the same courses in high 
school. There are many different ways to structure different courses (e.g., CTE 
courses, integrated science, senior project, etc.) that could help different 
students reach and exceed proficiency on the standards. [Appendix D (NGSS 
Lead States, 2013, Vol. II, pp.25–39), Appendix E (NGSS Lead States, 2013, 
Vol. II, pp.40–47), Appendix K (NGSS Lead States, 2013, Vol. II, pp.113–136)] 

 

Nature of Science and Methods of Inquiry in Science 
Question #4:  What aspects of scientific inquiry and processes (e.g., skills and habits of mind) 

are expressed in the standards, and how are they related to or integrated with 
the content? 

CSTA:  Aspects of scientific inquiry and processes are interwoven with content in the 
computer modeling and simulation portion of the Computational Thinking strand. 
Scientific practice includes the use, creation, and analysis of computer models 
and simulations for STEM inquiry.  Acting as computational scientists, students 
must learn, understand, and use computational thinking, computer science 
concepts, and computer programming constructs.  As users and evaluators of 
models, students must be able to look “under the hood” and understand the 
mechanisms, abstractions and algorithms implemented in a model using a 
computer programming language (as well as evaluate what has been left out of 
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a model). As creators of their own models, students must understand the 
computational science process and use computational thinking and computer 
science to design, implement, test and revise their model.  As young 
computational scientists, students must learn to use models as experimental 
test-beds and conduct experiments that sweep multi-dimensional parameter 
spaces.  The data output from these virtual experiments are subsequently 
analyzed and interpreted to gain an understanding of the underlying system or 
phenomenon.  Finally, students must be able to analyze their creations and 
determine to what extent their model represents the real world. Often this entails 
comparing simulation-generated output and real-world data captured of a similar 
phenomenon. Within the computational science process, students construct 
theories, design computational models that embody those theories, and then 
execute the models with various inputs (simulation) and gather evidence that 
support or refute their theories.  Similarly, teachers charged with preparing 
students as computational scientists must also learn these concepts and 
practices in order to teach them.  [CSTA K-12 Computer Science Standards, 
2011.] 

NGSS:  The NGSS are written as performance expectations built from the three 
dimensions described in the NRC Framework (2012), including Science 
Practices (Vol. II,  p. 48).  These eight practices are the behaviors that scientists 
engage in as they investigate and build models and theories about the natural 
world: Asking questions; Developing and using models; Planning and carrying 
out investigations; Analyzing and interpreting data; Using mathematics and 
computational thinking; Constructing explanations; Engaging in argument from 
evidence; and Obtaining, evaluating, and communicating information.  The 
practices are integrated with the disciplinary core ideas and crosscutting 
concepts in every NGSS performance expectation, such that students are 
expected to demonstrate their understanding of the core ideas and crosscutting 
concepts in the context of the practices.  For an example, see HS-ESS1 (Vol. I,  
pp. 119–121). [Appendix F (NGSS Lead States, 2013, Vol. II, pp.48–78)] 

 

Question #5:  In what ways do the standards encourage students to utilize multiple avenues of 
learning (e.g., learning by doing, direct instruction, reading, etc.) and to apply 
content material in novel situations? 

CSTA:  The CSTA standards encourage students to utilize multiple avenues of learning 
such as “learning by doing” as exemplified by the action verbs “use, build, 
modify, create, make, interact with, act out, analyze, and evaluate”; and 
“reflective practice” as exemplified by the verbs  “explain, classify, describe, and 
discuss”. [Computer Science Standards, 2011.   Pg 56-63.] 

NGSS:  The performance expectations are not a curriculum and do not dictate methods 
of instruction.  Instead, they are statements of what students should know and 
be able to do at the end of each grade band (Vol. I,  p. xxiii). The performance 
expectations can and should be met through a number of different means (e.g. 
Vol. II, p.101) allowing for multiple avenues of learning for diverse student 
groups (Vol. II,  p. 35) as well as encouraging innovation and creativity in 
instruction.  Importantly, the integration of science and engineering practices 
into the performance expectations in the NGSS ensures that students will be 
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expected to demonstrate proficiency in many different kinds of skills, thereby 
increasing the likelihood that instruction will incorporate many different kinds of 
learning modes. [Appendix D (NGSS Lead States, 2013, Vol. II, pp.25–39); 
Appendix F (NGSS Lead States, 2013, Vol. II, pp.49–50)]  

Connections / Relationships Among Standards at Different Grade Levels 
Question #6:  In what ways are the standards designed to build from grade level to grade level 

in science content, depth of content understanding, and the application of 
scientific inquiry and processes? 

CSTA:  These standards provide a three-level framework for computer science. The first 
two levels are aimed at grades K–6 and 6–9 respectively. We expect that the 
learning outcomes in Level 1 will be addressed in the context of other academic 
subjects. The learning outcomes in Level 2 may be addressed either through 
other subjects or in discrete computer science courses. Level 3 is divided into 
three separate exemplar courses: Computer Science in the Modern World, 
Computer Science Principles, and Topics in Computer Science. The standards 
provided in Computer Science in the Modern World reflect learning content that 
should be mastered by all students; Computer Science Principles and Topics in 
Computer Science are courses intended for students with special interest in 
computer science and other computing careers, whether they are college-bound 
or not. [CSTA K-12 Computer Science Standards, 2011.  Pg iii.] 

NGSS:  The NGSS focuses on a limited number of core ideas in science and 
engineering that build coherently over time throughout K–12 (Vol. II,  pp. 41–47, 
“Disciplinary Core Idea Progression charts”), such that by the end of high school 
all students are expected to have developed an accurate and thorough 
understanding of each core idea.  The depth of understanding appropriate for 
each grade band was specified by the NRC Framework (2012).  Student 
performance expectations at each grade band form a foundation for the 
achievement of the next grade band’s associated performance expectation(s).   
Practices and crosscutting concepts also grow in complexity and sophistication 
across the grades (Vol. II, pp.49–67, “practices tables”; Vol. II, pp.80–88 
“crosscutting concept tables”), allowing for a greater depth of understanding of 
the core ideas and crosscutting concepts over time, as well as a greater mastery 
of science and engineering practices. [Appendix E (NGSS Lead States, 2013, 
Vol. II, pp.40–47), Appendix F (NGSS Lead States, 2013, Vol. II, pp.48–78), 
Appendix G (NGSS Lead States, 2013, Vol. II, pp.79–95)] 

 

Question #7:  If there are any “outlier concepts” within the standards, how might they relate 
back to or reinforce the other concepts in the standards? 

CSTA:  The CSTA K-12 CS Standards do not include outliers concepts. 

NGSS:  The NGSS are standards for all students, and focus on a limited number of core 
ideas in science (Vol. II, p. 40).  These core ideas were derived from the NRC 
Framework (2012) and met the Framework committee’s criteria for inclusion in 
expectations for all students.  To ensure that the NGSS scope was teachable, 
and that there can be time in a typical classroom to help all students build depth 
of understanding in these core ideas, the NGSS does not include concepts that 
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fall outside the direct progression to each core idea.  However, the NGSS 
should not be viewed as a ceiling for instruction.  Students who are proficient in 
the NGSS can and should go beyond to make connections and apply what 
they’ve learned to other areas of interest. [Appendix E (NGSS Lead States, 
2013, Vol. II, pp.40–47)] 

 

Evaluation of Understanding and Application of Content Knowledge 
Question #8:  In what ways do the standards encourage students to apply content knowledge 

or to use content knowledge in novel situations to build and demonstrate depth 
of understanding? 

CSTA:  In many strands, students are encouraged to apply content knowledge to build 
artifacts that demonstrate depth of understanding. Students are asked to apply 
content knowledge or use content knowledge in novel situations to build or 
demonstrate depth of understanding. For example, in the CT strand students 
are directed to “critically examine classical algorithms and implement an original 
algorithm”.  In CPP strand, they are asked to “Anticipate future careers and the 
technologies that will exist”. [CSTA K-12 Computer Science Standards, 2011.  
pp. 56-59.] 

NGSS:  Decades of science education research have indicated that the best way to help 
students learn content deeply is to provide opportunities to practice applying 
content material, particularly in novel situations (e.g. Grabinger and Dunlap, 
1995).  By building the performance expectations from the three dimensions 
described in the NRC Framework (2012), the NGSS requires application of a 
relevant practice of science or engineering with a core disciplinary idea(s) and 
connects a crosscutting concept(s) with that core idea. Through the repeated 
application of the science and engineering practices and crosscutting concepts 
to different core ideas (especially among different disciplines) and through the 
explicit connections between core ideas in different performance expectations, 
the students are expected to use these in different and novel contexts, which 
enhances depth of understanding of all three of the dimensions (Vol. II, p. 49–
50, 80–81).  In addition, many performance expectations throughout K–12 
explicitly describe engineering applications for core ideas. [Appendix F (NGSS 
Lead States, 2013, Vol. II, pp.48–78), Appendix G (NGSS Lead States, 2013, 
Vol. II, pp.79–95)] 

 

Question #9:  In what ways do the standards require students to combine or synthesize 
multiple content ideas in order to demonstrate a deeper understanding of a 
large, broad theme within science or a specific scientific discipline? 

CSTA:  The CSTA K-12 Standards contain learning outcomes in computational thinking 
that require students to combine or synthesize multiple content areas and 
processes to demonstrate a deeper understanding of computational science and 
how computer models and simulation can be used to create new knowledge 
and/or solve problems. The Computational Thinking strand synthesizes learning 
outcomes in problem solving, algorithms, data representation, abstraction, and 
modeling and simulation, as well as connections to other fields. [CSTA K-12 
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Computer Science Standards, 2011.  Computational Thinking pp. 9-10 and 56-
57.] 

NGSS:  The NGSS is composed of student performance expectations, which are 
statements of what students should know and be able to do at the end of each 
grade band (Vol. I, p.xxiii).  In the NGSS, performance expectations are grouped 
together based on how they support or build up to a core idea.  In this way, a 
single performance expectation that requires the student to apply a science or 
engineering practice to one aspect of a core idea can be combined with the 
other performance expectations in the group to address multiple facets of the 
disciplinary core idea, leading to a greater depth of understanding of that core 
idea.  For example, all of the components of the disciplinary core idea “HS-
ESS1: Earth’s Place in the Universe” listed in the disciplinary core idea 
foundation box are addressed in total by the six performance expectations HS-
ESS1-1 to HS-ESS1-6 (Vol. I,  pp. 119–121).  By demonstrating proficiency in 
all the performance expectations of HS-ESS1, the student will have 
demonstrated a deeper understanding of the broader theme of the core idea.  
Each of the core ideas also builds in complexity from grade level to grade level, 
with increasingly more sophisticated performance expectations that address that 
core idea at each grade level band (Vol. II, pp. 41-47). [“How to Read the Next 
Generation Science Standards” (NGSS Lead States, 2013, Vol. I, pp. xxii-xxvi), 
Appendix E (NGSS Lead States, 2013, Vol. II, pp. 40–47)] 

 

Incorporation of Engineering Technology Standards 
Question #10:  How do the standards define engineering skills and habits of mind, and in what 

ways are students expected to demonstrate an understanding of these? 

CSTA:  The CSTA K-12 Computer Science Standards are focused on learning 
outcomes specific to the discipline of computer science and therefore do not 
address “Engineering Practices” per se, They do, however, consider aspects of 
the process of designing, developing, and testing algorithms, models and 
simulations, and software artifacts. Both engineering and computer science put 
forth methods for problem solving using an iterative approach.  [CSTA K-12 
Computer Science Standards, 2011.  Pg 4. ] 

NGSS:  Engineering practices are raised to the level of traditional science practices and 
include behaviors that engineers engage in, such as “defining problems” and 
“designing solutions” (Vol. II, pp.49,104).  There are eight engineering practices 
defined by the NGSS and the NRC Framework (2012) – most of which have 
equivalents in science: Defining problems; Developing and using models; 
Planning and carrying out investigations; Analyzing and interpreting data; Using 
mathematics and computational thinking; Designing solutions; Engaging in 
argument from evidence; and Obtaining, evaluating, and communicating 
information. These practices are incorporated throughout the NGSS with the 
disciplinary core ideas and crosscutting concepts in performance expectations, 
such that students are expected to demonstrate engineering design methods as 
applied to the content of the core ideas.  The NGSS also expect students to 
develop an understanding of some core engineering design principles—the 
disciplinary core idea ETS1 is devoted to describing engineering as a discipline, 
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and serves as the foundation for engineering-specific performance expectations 
from K–12. [Appendix F (NGSS Lead States, 2013, Vol. II, pp.48–78), Appendix 
I (NGSS Lead States, 2013, Vol. II, pp.103–107)]  

 

Question #11:  How are students expected to demonstrate increasing levels of proficiency over 
time in the use of engineering design methods, including how to incorporate  
”failure” in the design process? 

CSTA:  The iterative design process, including testing and debugging, are central to 
Computer Science as seen in CT-Problem solving 3A-2: Describe a software 
development process used to solve software problems; CPP-Programming 3A-
3: Use various debugging and testing methods to ensure program correctness; 
and CPP-Programming 3A-4: Apply analysis, design and implementation 
techniques to solve problems. [CSTA K-12 Computer Science Standards, 2011.] 

NGSS:  The NGSS includes the core idea of engineering design that requires use of 
engineering methods and practices that build coherently and grow in complexity 
and sophistication from grade level to grade level (Vol. II,  pp. 49–67; 104–107).  
Of the three components of this core idea, “optimizing the design solution” 
requires students to test their designs and to refine the final design, addressing 
any “failures” (Vol. II, p.104; e.g. HS-ETS1, Vol. I,  pp. 129–130).  [Appendix F 
(NGSS Lead States, 2013, Vol. II, pp. 48–78), Appendix I (NGSS Lead States, 
2013, Vol. II, pp.103–107)] 

 

Incorporation of Engineering Design and Methods into Science Standards 
Question #12:  For which students are the engineering-related standards a requirement (e.g., 

graduation requirements)? 

CSTA:  None 

NGSS:  Engineering design is integrated throughout the standards and is required of 
every student in two ways: 1) with science specific performance expectations 
that apply engineering practices and 2) with engineering-specific performance 
expectations that focus on engineering design at the K–2, 3–5, 6–8, and 9–12 
grade level bands (Vol. II, pp. 104–107). [Appendix I (NGSS Lead States, 2013, 
Vol. II, pp.103–107)] 

 

Question #13:  How and to what degree are engineering methods and the design process 
coupled with the science content standards to enhance the learning of both? 

CSTA:  Engineering methods and the engineering design process are not tightly 
coupled with the computer science content standards. Computer Science 
students learn skills that are applicable in many contexts including engineering. 
Computer science students learn logical reasoning, algorithmic thinking, design 
and structured problem solving—all concepts and skills that are valuable well 
beyond the computer science classroom. Students gain awareness of the 
resources required to implement, test, and deploy a solution and how to deal 
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with real-world constraints. These skills are applicable in many contexts, from 
science and engineering to the humanities and business, and they have enabled 
deeper understanding in these and other areas. [CSTA K-12 Computer Science 
Standards, 2011.  Pg 3 and Computing Practice and Programming 3A-4 “Apply 
analysis, design & implementation techniques to solve problems” and 3A-3 “Use 
various debugging and testing methods to ensure program correctness”.] 

NGSS:  Engineering method and design, as both practice and disciplinary content, are 
coupled with science content in each grade band of the NGSS (Vol. II,  p. 104). 
[Appendix I (NGSS Lead States, 2013, Vol. II, pp.103–107)] 

 

Course Sequencing and Relationships with Courses in other Content Areas 
Question #14:  In what ways do the standards provide a foundation for AP courses or other 

advanced course work? 

CSTA:  The CSTA K-12 CS standards at Levels 1 and 2 provide a foundation for the AP 
CS A course that can be offered as an option at level 3 (HS).  Level 3 provides 
three suggested exemplar course configurations, one of which is an AP CS 
course. [CSTA K-12 Computer Science Standards, 2011.  Pg 22.] 

NGSS:  The NGSS performance expectations are specifically designed not to limit the 
curriculum and to allow students interested in continuing their coursework in 
science or engineering the opportunity to do so (Vol. II,  pp. 113–115).  The 
NGSS performance expectations provide a foundation for rigorous advanced 
courses in science or engineering.  During the NGSS development process, 
over a hundred university and community college professors, as well as career 
training program instructors, met together to examine the NGSS expectations to 
ensure that they would provide a thorough foundation for entry-level courses in 
their fields.  Course models are currently being developed to show how the 
NGSS standards could specifically lead into advanced study in AP courses. 
[Appendix K (NGSS Lead States, 2013, Vol. II, pp.113–136), pending AP course 
models.] 

 

Question #15:  How and to what extent do the science standards require the application of 
knowledge from other content areas as well as enhance learning in these other 
areas, including English language arts and mathematics? 

CSTA:  The learning experiences created from the CSTA K-12 Computer Science 
standards should be relevant to the students and should promote their 
perceptions of themselves as proactive and empowered problem solvers. They 
should be designed with a focus on active learning and exploration and can be 
taught within explicit computer science courses or embedded in other curricular 
areas such as social science, language arts, mathematics, and science. [CSTA 
K-12 Computer Science Standards, 2011.  Pg. 8.] 

NGSS:  The NGSS were designed to align and keep pace with the CCSS-M/ELA, and 
the performance expectations are explicitly connected to the specific CCSS 
standards (Vol. I, p. xxvi;  Vol. II,  pp. 50, 137, 158). These connections highlight 
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how the performance expectations require mathematic principles to more deeply 
understand the core ideas as well as the role of writing, reasoning, and 
communication in understanding and applying the core ideas via the practices 
(Vol. II,  pp. 27–28, 50, 137–138, 158).  In addition, these connections also 
provide suggestions for where science skills and knowledge could be built 
simultaneously with mathematics or ELA skills and knowledge. [Appendix L 
(NGSS Lead States, 2013, Vol. II, pp.137–157), Appendix M (NGSS Lead 
States, 2013, Vol. II, pp.158–169)] 

 

Preparing Students for College, Career, and Citizenship 
Question #16:   In what ways do the standards help students develop the technical knowledge 

requirements and the collaboration, communication, and problem-solving skills 
desired by employers (e.g., in preparation for Career and Technical Education 
[CTE] programs or direct employment out of high school)? 

CSTA:  4.2.2 Collaboration of the CSTA standards states “Computer science is an 
intrinsically collaborative discipline.  Significant progress is rarely made in 
computer science by one person working alone. Typically, computing projects 
involve large teams of computing professionals working together to design, 
code, test, debug, describe, and maintain software over time. New programming 
methodologies such as pair programming emphasize the importance of working 
together. Additionally, development teams working with discipline-specific 
experts ensure the computational solutions are appropriate, effective, and 
efficient. Developing collaboration skills is thus an important part of these K–12 
national computer science standards. In elementary school, students can begin 
to work cooperatively with fellow students and teachers using technology. They 
learn to gather information and communicate with others using a variety of 
traditional and mobile communication devices. They also learn to use online 
resources and participate in collaborative problem solving activities. These 
collaborative activities continue into middle school, where students apply 
multimedia and productivity tools for group learning exercises. In secondary 
school, students enhance their collaborative abilities by participating in teams to 
solve software problems that are relevant to their daily lives. Skills learned at 
this level can include teamwork, constructive criticism, project planning and 
management, and team communication, all of which are considered necessary 
21st Century skills (see Partnership for 21st Century Skills at p21.org). “ [CSTA 
K-12 Computer Science Standards, 2011.  Pg 10.] 

NGSS:  The NGSS integrates science and engineering practices throughout the K–12 
standards, and describes explicit connections to the CCSS-M/ELA — thereby 
expecting students to develop habits, skills, and knowledge specifically 
applicable to many technical fields or preparation program (Vol. II,  pp. 11–14, 
17–20, 25–30, 138).  To be proficient in the NGSS, students will need to 
develop the means to communicate effectively and the critical thinking and 
problem solving skills necessary for employment in rapidly changing job market. 
[Appendix C (NGSS Lead States, 2013, Vol. II, pp.11–24), Appendix D (NGSS 
Lead States, 2013, Vol. II, pp.25–39)] 
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Question #17:  How do the standards reflect the ways in which science and engineering are 
currently practiced in society as well as how these disciplines impact society and 
address societal needs and concerns? 

CSTA:  The ethical use of computers and networks is a fundamental aspect of computer 
science at all levels and should be seen as an essential element of both learning 
and practice. As soon as students begin using the Internet, they should learn the 
norms for its ethical use. Principles of personal privacy, network security, 
software licenses, and copyrights must be taught at an appropriate level in order 
to prepare students to become responsible citizens in the modern world. 
Students should be able to make informed and ethical choices among various 
types of software such as proprietary and open source and understand the 
importance of adhering to the licensing or use agreements. Students should 
also be able to evaluate the reliability and accuracy of information they receive 
from the Internet. Computers and networks are a multicultural phenomenon that 
effect society at all levels. It is essential that K–12 students understand the 
impact of computers on international communication. They should learn the 
difference between appropriate and inappropriate social networking behaviors. 
They should also appreciate the role of adaptive technology in the lives of 
people with various disabilities. Computing, like all technologies, has a profound 
impact on any culture into which it is placed. The distribution of computing 
resources in a global economy raises issues of equity, access, and power. 
Social and economic values influence the design and development of computing 
innovations. Students should be prepared to evaluate the various positive and 
negative impacts of computers on society and to identify the extent to which 
issues of access (who has access, who does not, and who makes the decisions 
about access) impact our lives. [CSTA K-12 Computer Science Standards, 
2011.  Pg 11.] 

NGSS:  By integrating science and engineering practices with core ideas and by 
describing connections to the CCSS-M/ELA, the NGSS better reflect the 
interconnection of science, engineering, and math in industry (Vol. II,  pp. 17–
20, 49–50, 103–104, 138).  The inclusion of engineering and science practices 
reflects the emphasis on investigation and innovation in technical fields.  The 
NRC Framework (2012) disciplinary core idea of ETS2: “Links among 
engineering, technology, science, and society” is included in the NGSS as an 
overarching, cross-disciplinary idea, and the specific components of this idea 
are explicitly stated within the foundation boxes where they apply to individual 
performance expectations in each of the scientific disciplines and across grade 
bands (e.g., HS-ESS1; Vol. I, pp. 120–121). The standards that specifically 
address the interrelationship among science, engineering, and human society 
help students develop the understanding that technological advances can have 
a profound impact on society and the environment (Vol. II,  pp. 108–111, 
including the “Science, Technology, Society, and the Environment Connections 
Matrix”). This highlights the importance of technology in developing scientific 
understanding and the importance of science on driving technological 
innovation. [Appendix C (NGSS Lead States, 2013, Vol. II, pp.11–24), Appendix 
J (NGSS Lead States, 2013, Vol. II, pp.108–112)] 
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Question #18:  To what extent do the science standards explicitly support underserved student 
populations and those populations that traditionally have not succeeded in 
science and engineering (e.g., females, minorities, English language learners, 
etc.)? 

CSTA:  Computer science applies to virtually every aspect of life, so that it can be easily 
tied to myriad student interests. For example, students who are fascinated with 
specific technologies such as cell phones may have an innate passion for visual 
design, digital entertainment, or helping society. K–12 computer science 
teachers can thus nurture students’ interests, passions, and sense of 
engagement with the world around them by offering opportunities for solving 
computational problems relevant to their own life experiences. Excellence in 
computer science education relies on equitable practices that maximize the 
learning potential of all students. Computer science learning opportunities must 
be shaped in ways that connect the canon of computer science content provided 
in the curricular standards to the lived experiences of diverse students. The 
equitable practices in computer science education that connect students with 
the curriculum include: 
• All students should have access to rigorous and culturally meaningful 

computer science and be held to high expectations for interacting with the 
curriculum. 

• Diverse experiences, beliefs, and ways of knowing computer science should 
be acknowledged, incorporated, and celebrated in the classroom. 

• The integration of different interpretations, strategies, and solutions that are 
computationally sound enhance classroom discussions and deepen 
understandings. 

• The resources needed for teaching and learning computer science should be 
equitably allocated across groups of students, classrooms, and schools. 

• Classroom learning communities should foster an environment in which all 
students are listened to, respected, and viewed as valuable contributors to 
the learning process. 

• Ongoing teacher reflection about belief systems, assumptions, and biases 
support the development of equitable teaching practices. 

 Pedagogically, computer programming has the same relation to studying 
computer science as playing an instrument does to studying music or painting 
does to studying art. In each case, even a small amount of hands-on experience 
adds immensely to life-long appreciation and understanding, even if the student 
does not continue programming, playing, or painting as an adult. Although 
becoming an expert programmer, violinist, or oil painter demands much time 
and talent, we still want to expose every student to the joys of being creative. 
The goal for teaching computer science should be to get as many students as 
possible enthusiastically engaged with every assignment. We can provide 
students with the tools to design and write programs that control their cell 
phones or robots, create physics and biology simulations, or compose music. 
Students will want to learn to use conditional statements, loops, parameters, 
and other fundamental concepts just to make these exciting things happen. In a 
fast-paced field such as computer science, we are all challenged to keep up with 
our peers and our students. Technology changes rapidly, and students are 
sometimes more likely than teachers to be familiar with the latest incarnations. 
No teacher should be apprehensive of learning from her or his students. Real 
learning involves everyone in the room living with a sense of wonder and 
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anticipation. We know that teaching computer science involves some unique 
challenges and that none of us has all of the answers. The CSTA Source Web 
Repository at http://csta.acm.org/WebRepository/WebRepository.html provides 
a comprehensive collection of resources for teachers. These resources have 
been found to be helpful in our attempts to better interest, engage, and motivate 
our students. Not all of them will be completely applicable to every classroom, 
but we believe that many contain useful and varied suggestions that may inspire 
both students and teachers alike. [CSTA K-12 Computer Science Standards, 
2011.  Pg 4-5.] 

NGSS:  The NGSS describe performance expectations for all students, raising the 
expectations for students who might not otherwise take much science in high school. The NGSS 
also make connections across the school curricula, including to mathematics and English 
Language Arts.  In addition, the NGSS practices converge with the math and ELA practices.  
These connections are beneficial for students from non-dominant groups who are pressed for 
instructional time to develop literacy and numeracy at the cost of other subjects, including 
science. The NGSS integrate science and engineering practices in every performance 
expectation, providing students an opportunity to demonstrate their understanding in multiple, 
diverse ways and providing a justification for multiple, diverse modes of instruction. The NGSS, 
by emphasizing engineering, recognizes the contributions of non-dominant cultures and groups 
to science and engineering.  Engineering also has the potential to be inclusive of students who 
have traditionally been marginalized in the science classroom and who do not see science as 
being relevant to their lives or future (Vol. II, pp. 27–30).  By solving problems through 
engineering in local contexts, students view science as relevant to their lives and future, and 
engage in science in socially relevant and transformative ways. Engagement in any of the 
scientific and engineering practices involves both critical thinking and communication skills (Vol. 
II, p. 50).  Because the NGSS is required of all students, these skills will help ESL learners to 
practice language skills. Finally, the integration of practices with crosscutting concepts require 
students to think deeply about material and to make connections among big ideas that cut 
across disciplines, which provides opportunities for learning that has not traditionally been 
available to disadvantaged or less privileged learners (Vol. II, pp. 80–81).  The following case 
studies are provided to detail how the NGSS can be used to benefit diverse groups of students: 
(1) Economically Disadvantaged, (2) Race and Ethnicity, (3) Students with Disabilities, (4) 
English Language Learners, (5) Girls, (6) Alternative Education, (7) Gifted and Talented 
Students (www.nextgenscience.org/appendix-d-case-studies). [Appendix D (NGSS Lead States, 
2013, Vol. II, pp.25–39); www.nextgenscience.org/appendix-d-case-studies 
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Augmenting Practices in Science and Engineering with those from 
Computational Science 
 

By Irene Lee         5/12/2014 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This document is derived from table 3-2 of the “Framework for K-12 
Science Education” and includes practices that distinguish Computational 
Science from Science and Engineering. 
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Science begins with a question 
about a phenomenon, such as 
“Why is the sky blue?” or 
“What causes cancer?” and 
seeks to develop theories that 
can provide explanatory 
answers to such questions. A 
basic practice of the scientist 
is formulating empirically 
answerable questions about 
phenomena, establishing what 
is already known, and 
determining what questions 
have yet to be satisfactorily 
answered. 
 

Computational Science begins 
with a question, such as “How 
do birds form flocks?” or a 
problem and seeks to develop a 
computer model with which to 
test theories or design 
solutions.  
In Computational Science, part 
of the question is whether or 
not it is suitable for modeling 
using computational methods, 
and if so, which method? 
The practice of creating models 
necessarily involves reflection 
on the essential mechanisms at 
work in the real-world system or 
problem domain.  When 
computer models are 
constructed that correspond 
reasonably well with real-world 
problems, the model can be 
used to collect data that 
promote understanding of the 
real-world problem. 
Furthermore, reflection upon 
the limitations and inaccuracies 
of the model offer opportunities 
to consider deep questions 
about essential mechanisms at 
play in the real-world systems. 
 

Engineering begins with a 
problem, need or desire that 
suggests an engineering 
problem that needs to be 
solved. A societal problem 
such as reducing the nation’s 
dependence on fossil fuels 
may engender a variety of 
engineering problems, such 
as designing more efficient 
transportation systems, or 
alternative power generation 
devices such as improved 
solar cells. Engineers ask 
questions to define the 
engineering problem, 
determine criteria for a 
successful solution, and 
identify constraints. 
 

The distinction between science and engineering may not make sense in the age of 
Computational Science. 
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Science often involves the 
construction and use of a wide 
variety of models and 
simulations to help develop 
explanations about natural 
phenomena. Models make it 
possible to go beyond 
observables and imagine a 
world not yet seen. Models 
enable predictions of the form 
“if . . . then . . . therefore” to be 
made in order to test 
hypothetical explanations. 
 

Computational Science 
involves the construction and 
use of computer models to 
help develop explanations 
about the natural and artificial 
world. In the simplest cases, 
computer models support 
prediction. Models of more 
complex or interactive systems 
offer opportunities to gather 
quantitative data which points 
to qualitative outcomes.  
Models are used as 
experimental test beds with 
which to run simulations by 
changing parameters and 
rules. Rather than simply 
testing strengths and 
limitations of designs (as in 
engineering), computer 
modeling and simulation can 
be used to test theories, 
illuminate core dynamics 
within a system, discover new 
questions, understand the 
landscape of outcomes, and 
build intuition about complex 
systems.  

Engineering makes use of 
models and simulations to 
analyze existing systems so 
as to see where flaws might 
occur or to test possible 
solutions to a new problem. 
Engineers also call on 
models of various sorts to 
test proposed systems and 
to recognize the strengths 
and limitations of their 
designs. 
 

Computer models are used to: [J. Epstein, 2008]1. Explain (very distinct from predict); 2. Guide 
data collection; 3. Illuminate core dynamics; 4. Suggest dynamical analogies; 5. Discover new 
questions; 6. Promote a scientific habit of mind; 7. Bound (bracket) outcomes to plausible 
ranges; 8. Illuminate core uncertainties; 9. Offer crisis options in near-real time; 10. Demonstrate 
tradeoffs / suggest efficiencies; 11. Challenge the robustness of prevailing theory through 
perturbations; 12. Expose prevailing wisdom as incompatible with available data; 13. Train 
practitioners; 14. Discipline the policy dialogue; 15. Educate the general public; and 16. Reveal 
the apparently simple to be complex. 
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Scientific investigation may be 
conducted in the field or the 
laboratory. A major practice of 
scientists is planning and 
carrying out a systematic 
investigation, which requires the 
identification of what is to be 
recorded and, if applicable, what 
are to be treated as the 
dependent and independent 
variables (control of variables). 
Observations and data collected 
from such work are used to test 
existing theories and 
explanations or to revise and 
develop new ones. 
 

The investigations that can be 
carried out virtually using a 
computer model can be 
unlike traditional science or 
engineering experiments. 
Increases in computational 
power have enabled 
Computational Scientists to 
“sweep” the parameter 
spaces of all possible 
combinations of inputs and 
collect outcome data from 
each run.  Analysis of these 
data can reveal “landscapes” 
of possible outcomes and 
help scientists better 
understand the behavior of 
the system modeled. Some 
models are stochastic in 
nature, and multiple runs with 
each set of input parameters 
can be run quickly and 
efficiently. The computer’s 
ability to efficiently generate 
pseudorandom inputs allows 
modelers to effectively 
explore these systems as 
well.    

Engineers use investigation 
both to gain data essential 
for specifying design criteria 
or parameters and to test 
their designs. Like 
scientists, engineers must 
identify relevant variables, 
decide how they will be 
measured, and collect data 
for analysis. Their 
investigations help them to 
identify how effective, 
efficient, and durable their 
designs may be under a 
range of conditions. 
 

How is experimental design different when using computer models? 
1) The space of variables may be larger and multidimensional - sweep space of variables 
2) Stochasticity within models requires that multiple runs be performed at each setting to 

get a sense of the variability of outcome. 
3) The goal of the experimentation may be different.  Computational experiments may be 

generative - for example, a researcher may investigate if a set of simple rules can 
generate a phenomenon seen in nature. 

Planning and carrying out scientific investigations using computer models also involves 
parameterizing the model by selecting relevant variables and determining experimental design; 
planning the data collection and analysis and considering what constitutes “proof” when using 
data output from models; simulating and collecting data; and using the computational model as 
a test bed for running experiments.  
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Scientific investigations produce 
data that must be analyzed in 
order to derive meaning. 
Because data usually do not 
speak for themselves, scientists 
use a range of tools including 
tabulation, graphical 
interpretation, visualization, and 
statistical analysis—to identify 
the significant features and 
patterns in the data. Sources of 
error are identified and the 
degree of certainty calculated. 
Modern technology makes the 
collection of large data sets 
much easier, thus providing 
many secondary sources for 
analysis. 

Computational Science 
investigations can produce 
large amounts of output data 
that, when analyzed, can give 
scientists insights into the 
nature of systems.  
Computational Scientists use 
various computational and 
mathematical analysis 
techniques to identify salient 
features and patterns in data.  
Once data are produced from 
simulations (multiple runs of 
the model with different input 
parameters), regression and a 
variety of machine learning 
techniques can be used to 
determine the correlations 
between inputs and outputs.   

Engineers analyze data 
collected in the tests of their 
designs and investigations; 
this allows them to compare 
different solutions and 
determine how well each one 
meets specific design 
criteria—that is, which design 
best solves the problem 
within the given constraints. 
Like scientists, engineers 
require a range of tools to 
identify the major patterns 
and interpret the results. 
 

Does science proceed from observation to models and theory that account for data, OR visa 
versa? 
“On this point, many non-modelers, and indeed many modelers, harbor a naïve inductivism that 
might be paraphrased as follows: 'Science proceeds from observation, and then models are 
constructed to 'account for' the data.'  …  This can be very productive, but it is not the rule in 
science, where theory often precedes data collection. Maxwell's electromagnetic theory is a prime 
example. From his equations the existence of radio waves was deduced. Only then were they 
sought…and found! General relativity predicted the deflection of light by gravity, which was only 
later confirmed by experiment. Without models, in other words, it is not always clear what data to 
collect!” [J. Epstein, 2008] 
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In science, mathematics and 
computation are fundamental 
tools for representing physical 
variables and their relationships. 
They are used for a range of 
tasks, such as constructing 
simulations, statistically 
analyzing data, and recognizing, 
expressing, and applying 
quantitative relationships. 
Mathematical and computational 
approaches enable predictions 
of the behavior of physical 
systems, along with the testing 
of such predictions. Moreover, 
statistical techniques are 
invaluable for assessing the 
significance of patterns or 
correlations. 
 
 

In Computational Science, 
computational thinking 
(abstraction, automation, and 
analysis) is intrinsic to 
computer modeling and 
simulation. Abstraction is used 
to reduce a problem to 
essential elements and their 
relationships.  Abstraction can 
result in a general instance 
that can represent all other 
instances. Automation is used 
when designing algorithms to 
process information and when 
using a computer as a labor 
saving device that executes 
repetitive tasks quickly and 
efficiently. Computer models 
use algorithms and automation 
as their “engines”. Analysis is 
the validation of whether or not 
the abstractions made were 
appropriate to the questions 
being asked.  Validation 
occurs at the fine-grained level 
of the mechanisms 
responsible model low-level 
interactions as well as at the 
highest levels of whether the 
results of the model match 
observation.  

In engineering, mathematical 
and computational 
representations of 
established relationships 
and principles are an integral 
part of design. For example, 
structural engineers create 
mathematically-based 
analyses of designs to 
calculate whether they can 
stand up to the expected 
stresses of use and if they 
can be completed within 
acceptable budgets. 
Moreover, simulations of 
designs provide an effective 
test bed for the development 
of designs and their 
improvement. 
 

Computational thinking describes a set of human thinking skills, habits and approaches that are 
integral to solving complex problems using a computer. Computational thinking skills involve 
understanding and formulating a problem in such as way that its “solution” can be systematically 
and efficiently produced through a set of computational steps or algorithms to be carried out by a 
computer. Some, such as Dave Moursand (2009), suggest that the underlying idea in 
computational thinking is developing models and simulation of problems that one is trying to study 
and solve. 
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The goal of science is the 
construction of theories that can 
provide explanatory accounts of 
features of the world. A theory 
becomes accepted when it has 
been shown to be superior to 
other explanations, in the 
breadth of phenomena it 
accounts for, and its explanatory 
coherence and parsimony. 
Scientific explanations are 
explicit applications of theory to 
a specific situation or 
phenomenon, perhaps with the 
intermediary of a theory-based 
model for the system under 
study.  
The goal for students is to 
construct logically coherent 
explanations of phenomena that 
incorporate their current 
understanding of science, or a 
model that represents it, and are 
consistent with the available 
evidence. 

As with Science, the goal of 
Computational Science is the 
construction of theories that 
can provide explanatory 
accounts of features of the 
world. A theory becomes 
accepted when it has been 
shown to be superior to other 
explanations, in the breadth 
of phenomena it accounts for, 
and its explanatory 
coherence and parsimony.  
Scientific explanations are 
reinforced when a theory-
based model for the system 
under study produces 
outcomes similar to those 
observed in the real world. 
The goal for students is to 
construct models of 
phenomena that incorporate 
their current understanding of 
science, use them as 
experimental test beds and 
determine if running the 
model produces outcomes 
consistent with the available 
evidence. 

Engineering design, a 
systematic process for 
solving engineering problems, 
is based on scientific 
knowledge and models of the 
material world. Each 
proposed solution results 
from a process of balancing 
competing criteria of desired 
functions, technological 
feasibility, cost, safety, 
esthetics, and compliance 
with legal requirements. 
There is usually no single 
best solution but rather a 
range of solutions. Which one 
is the optimal choice depends 
on the criteria used for 
making evaluations. 
 

“Many simple models: the Lotka-Volterra ecosystem model, Hooke's Law, or the Kermack-
McKendrick epidemic equations (compartmental models) continue to form the conceptual 
foundations of their respective fields. They are universally taught knowing that these models 
approximate nature, but nonetheless are useful in developing basic intuitions.  This is because 
they capture qualitative behaviors of overarching interest, such as predator-prey cycles, or the 
nonlinear threshold nature of epidemics and the notion of herd immunity.” [J.Epstein, 2008] 



            

 

24 
	
  

 

 Science Computational Science Engineering 

8.
 O

bt
ai

ni
ng

, E
va

lu
at

in
g,

 a
nd

 C
om

m
un

ic
at

in
g 

In
fo

rm
at

io
n 

Science cannot advance if 
scientists are unable to 
communicate their findings 
clearly and persuasively or to 
learn about the findings of 
others. A major practice of 
science is thus the 
communication of ideas and 
the results of inquiry—orally, 
in writing, with the use of 
tables, diagrams, graphs, and 
equations, and by engaging in 
extended discussions with 
scientific peers. Science 
requires the ability to derive 
meaning from scientific texts 
(such as papers, the Internet, 
symposia, and lectures), to 
evaluate the scientific validity 
of the information thus 
acquired, and to integrate that 
information. 
 
 
 
 

Computational Science 
combines features of both 
science and engineering 
practices including obtaining, 
evaluating, and 
communicating information.  
Computer models are 
frequently designed on 
platforms or written in 
computer languages that 
offer easy access to 
visualization tools and other 
interface elements that 
promote inter-disciplinary use 
of the models. The 
visualizations and, in some 
cases, the automated and 
animated runs of the model, 
allow the models to be used 
as powerful communication 
tools. 

Engineers cannot produce 
new or improved 
technologies if the 
advantages of their designs 
are not communicated clearly 
and persuasively.  Engineers 
need to be able to express 
their ideas, orally and in 
writing, with the use of tables, 
graphs, drawings, or models 
and by engaging in extended 
discussions with peers. 
Moreover, as with scientists, 
they need to be able to derive 
meaning from colleagues’ 
texts, evaluate the 
information, and apply it 
usefully. 
In engineering and science 
alike, new technologies are 
now routinely available that 
extend the possibilities for 
communication and 
collaboration. 
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Notes: 

“Computational Science is a field of applied computer science, that is, the application of 
computer science to solve problems across a range of disciplines. In the book 
Introduction to Computational Science [3], the authors offer the following definition:  
 

“the field of computational science combines computer simulation, scientific 
visualization, mathematical modeling, computer programming and data structures, 
networking, database design, symbolic computation, and high performance 
computing with various disciplines.” Computer science, in contrast, is largely focused 
on the theory, design, and implementation of algorithms for manipulating data and 
information...The needs of scientists and engineers for computation have long driven 
research and innovation in computing. As computers increase in their problem-
solving power, computational science has grown in both breadth and importance. It 
is a discipline in its own right [2]. 
 
An amazing assortment of sub-fields have arisen under the umbrella of 
computational science, including computational biology, computational chemistry, 
computational mechanics, computational archeology, computational finance, 
computational sociology and computational forensics. 
 
Some fundamental concepts of computational science are germane to every 
computer scientist (e.g., modeling and simulation), and computational science topics 
are extremely valuable components of an undergraduate program in computer 
science. Students who take courses in this area have an opportunity to apply these 
techniques in a wide range of application areas, such as molecular and fluid 
dynamics, celestial mechanics, economics, biology, geology, medicine, and social 
network analysis.  
 
Modeling and simulation of real world systems represent essential knowledge for 
computer scientists and provide a foundation for computational sciences. Any 
introduction to modeling and simulation would either include or presume an 
introduction to computing. In addition, a general set of modeling and simulation 
techniques, data visualization methods, and software testing and evaluation 
mechanisms are also important.” 

 
Excerpted from “Computer Science Curricula 2013 – Curriculum Guidelines for 
Undergraduate Degree Programs in Computer Science”,  December 20, 2013.  The 
Joint Task Force on Computing Curricula; Association of Computing Machinery (ACM) 
and IEEE Computer Society. ISBN: 978-1-4503-2309-3 / DOI: 10.1145/2534860 / Web link: 
http://dx.doi.org/10.1145/2534860 
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Aligning the Framework for K-12 Science Education and CSTA K-12 
Standards through the Scientific Practice of Modeling and Simulation 

Irene A. Lee 
 

Background 
To address the problems of the 21st century that affect us all such as climate change, 
loss of biodiversity, energy consumption and virulent disease (Emmott et al, 2006), 
students need to understand large, complex systems. Computational Science, at the 
intersection of computer science, mathematics and science, is seen as the third leg of 
science.  In addition to theoretical and experimental/lab/field-based science, 
Computational Science is intrinsic to the work of the modern scientist.  Increases in 
computational power have enabled scientists and researchers across disciplines to 
design and conduct experiments on models of systems that are too big, too expensive 
or too dangerous to experiment with in the real world.  Using a computer model an 
experimental test bed, scientists are able to run multiple “What if” scenarios quickly and 
collect and analyze large amounts of data utilizing the computational power computers 
afford. New fields that explicitly integrate the use of computation include computational 
biology, computation physics, computational social science, and computational 
chemistry, to name a few. 
 
The spread of diseases (and interventions to prevent them) offers a powerful example 
of the critical use of complex models to solve daunting scientific and human problems.  
In the August 2009 issue of Nature Josh Epstein states:  
 

As the world braces for an autumn wave of swine flu (H1N1), the relatively 
new technique of agent-based computational modeling is playing a central 
part in mapping the disease’s possible spread, and designing policies for its 
mitigation...Classical epidemic modeling, which began in the 1920s, was built 
on differential equations. These models assume that the population is 
perfectly mixed, with people moving from the susceptible pool, to the infected 
one, to the recovered (or dead) one. Within these pools, everyone is identical, 
and no one adapts their behavior. But such models are ill suited to capturing 
complex social networks and the direct contacts between individuals, who 
adapt their behaviors—perhaps irrationally—based on disease prevalence. 
Agent-based models (ABMs) embrace this complexity. ABMs are artificial 
societies: every single person (or ‘agent’) is represented as a distinct software 
individual. 

 
Computer modeling and simulation are important tools in the computational scientist’s 
toolkit. Computer modeling and simulation are used to test theories, illuminate core 
dynamics within a system, discover new questions, understand the landscape of 
outcomes, and build intuition about complex systems.  As explicit representations of 
scientists’ abstraction and assumptions, they can serve as artifacts around which to 
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focus a dialogue, train practitioners, and educate the general public. But all of these 
benefits do not come about without human creativity and ingenuity.  Computational 
thinking describes a set of human thinking skills, habits and approaches that are integral 
to solving complex problems using a computer. Computational thinking skills involve 
understanding and formulating a problem in such as way that its “solution” can be 
systematically and efficiently produced through a set of computational steps or 
algorithms to be carried out by a computer.  Some, such as Dave Moursand (2009), 
suggest that the underlying idea in computational thinking is developing models and 
simulation of problems that one is trying to study and solve. 
 
The three pillars of computational thinking: abstraction, automation, and analysis, are 
intrinsic to computer modeling and simulation. Abstraction is the stripping down of a 
problem to its bare essentials and capturing common characteristics that can be used to 
represent all other instances. A computer model is an abstraction of a real-world 
phenomenon or scenario and time is abstracted allowing scientists to run simulated 
experiments faster than the analogous experiments in real-life. Automation entails 
writing algorithms to process information and using a computer as a labor saving device 
that executes repetitive tasks quickly and efficiently. Computer models use algorithms 
and iterations as their “engines”. Analysis is the validation of whether or not the 
abstractions made were correct.  In the context of modeling and simulation one might 
ask “Were the right assumptions made when narrowing down the problem to its bare 
essentials?” and “Were important factors left out of the model?” Thus, in terms of 
modeling and simulation, computational thinking is used on many levels of a model.  At 
a high level, the “problem” at hand is that of describing/encapsulating a phenomena or 
scenario in the form of a model and the “solution” is a resulting model that mimics the 
real-world to the required degree (or in required ways) such that it can be used as an 
experimental test bed and/or learning tool.  At a lower level, computational thinking may 
be the development of algorithms that encapsulate the behavior of a component of the 
model or system. 
 

The Need 
As described in the Computational Thinking in the Next Generation Science Standards 
document, “Currently, in most science classrooms, the use of computers is relegated to 
simulations or data entry.  The opportunities afforded to science through the use of 
computer science concepts are immense.  Instead of a student simply manipulating 
conditions, students who are able to construct their own simulations will display a clear 
grasp of the scientific concepts expected in the NGSS.  More importantly, this ability 
more closely aligns to how scientists do their work today.  There are many concepts in 
science that are difficult or even impossible to test or manipulate.  Students prepared 
using this type of [computer science] instruction have a whole world of opportunities 
opened to them that will stimulate interest and mastery of material.”   
 
The NGSS are performance standards for students, goals that reflect what students 
should know and be able to do. New to the standards is the call for science education to 
change in three fundamental ways: 1) science content and practice are to be 
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intertwined; 2) scientific practice includes the use, creation, and analysis of computer 
models and simulations for STEM inquiry and in the engineering design cycle; and 3) 
scientific practice includes computational thinking. In other words, students as science 
learners need to act as modern computational scientists.  Furthermore, to act as 
computational scientists, students must learn, understand, and use computational 
thinking, computer science concepts, and computer programming constructs.  As users 
and evaluators of models, students must be able to look “under the hood” and 
understand the mechanisms, abstractions and algorithms implemented in a model using 
a computer programming language (as well as evaluate what has been left out of a 
model). As creators of their own models, students must understand the computational 
science process and use computational thinking and computer science to design, 
implement, test and revise their model.  As young computational scientists, students 
must learn to use models as experimental test-beds and conduct experiments that 
sweep multi-dimensional parameter spaces.  The data output from these virtual 
experiments are subsequently analyzed and interpreted to gain an understanding of the 
underlying system or phenomenon.  Finally, students must be able to analyze their 
creations and determine to what extent their model represents the real world. Often this 
entails comparing simulation-generated output and real-world data captured of a similar 
phenomenon. 
 
Within the computational science process, students construct theories, design 
computational models that embody those theories, and then execute the models with 
various inputs (simulation) and gather evidence that support or refute their theories.  
Similarly, teachers charged with preparing students as computational scientists must 
also learn these concepts and practices in order to teach them.   
 

Approach 
To communicate the importance of computer science and illustrate how computer 
science concepts can be integrated into the science classroom, we have developed a 
crosswalk between middle and high school NGSS Framework and CSTA K-12 
Computer Science Standards. The crosswalk between the NGSS Framework and the 
CSTA K-12 CS Standards hinges on the aforementioned work of the computational 
scientist.  Irrespective of whether the computational scientist was first trained as a 
computer scientist or as a scientist in a discipline other than computer science, the 
“computational scientist” is a computational thinking-enabled STEM professional 
[Malyn-Smith and Lee, 2012] who works at the intersection of science, computer 
science and mathematics.  As defined in the “Profile of a Computational Thinking 
Enabled STEM Professional in America’s Workplaces” a computational thinking-
enabled STEM professional uses skills, habits and approaches integral to solving 
problems using a computer (e.g. abstraction, automation, and analysis) as he/she 
engages in a creative process to solve problems, automate systems, or improve 
understanding by defining, modeling, qualifying and refining systems, processes, or 
mechanism generally through the use of computers [EDC, 2011].  This professional 
may work as a scientist seeking answers or as an engineer solving problems.  
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The NGSS framework explicitly references engineering practice at the nexus of 
computer science and science and describes the work as “engineers apply science to 
design solution to problems and the result is technology”. The description of 
“computational science” as the scientific practice at the nexus of computer science and 
science, however, is less clear.   From a computational science perspective, 
computational scientists create and use technology tools (e.g. computer models and 
simulation) to look for patterns in seeking to answer questions, the result is scientific 
knowledge.  In this crosswalk we will focus on this perspective. 
 
The computational science cycle is a progression that was first developed and used in 
the Adventures in Supercomputing program, a Sandia National Laboratory funded 
educational program that engaged high school students in the practice of computational 
science, in 2000-2003.  Subsequently it has been used in the Supercomputing 
Challenge, Project GUTS: Growing Up Thinking Scientifically, and the New Mexico 
Computer Science for All programs with middle and high school students over the past 
ten years.  The “computational science cycle” was validated as representative of 
processes used in computational modeling and simulation by scores of computational 
scientists working at the Los Alamos National Laboratory and Sandia National 
Laboratories and is aligned with the activities and tasks of the computational thinking 
STEM professional [Malyn-Smith and Lee, 2012]. The following diagram illustrates the 
cycle.  
 
The computational science cycle was chosen as an intermediary scaffold between the 
NGSS and the CSTA Standards because it exemplifies a common trajectory through 
the practices within the realm of computational science and because it captures a 
subset of the activities and tasks of the computational thinking STEM professional that 
is appropriate for middle and high school students to understand. It describes process 
of designing, implementing, using and analyzing a computer model. Using the 
Computational Science Cycle as a roadmap, computational thinking and computer 
programming are contextualized within answering a question and/or solving a real-world 
problem using computational modeling and simulation.   
 

                         
Figure 1. The Computational Science Cycle 
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From the perspective of an educator, the stages in the “Computational Science 
Process” include:   
 
Stage 1: Selection of a real-world problem or scientific phenomenon to study. We 
will discuss what makes a problem or phenomenon suitable for studying using 
computational methods.  We will discuss the simplifications made in models through 
abstraction. We will ask: What real-world issue you are interested in investigating? What 
are measurable aspects of the problem? and guide participants in constructing 
questions that could be answered through modeling and simulation.   

Stage 2: Simplify the scope of the model using abstraction. We will ask: What 
aspects of the problem are important to model? and What is happening at different 
scales of observation in the complex system?  The scope of the problem will be 
narrowed to one that can be modeled given the software and computing resources 
available. We will diagram the model components and the simulation loop.  

Stage 3: From the description and diagram of the model, we will move to the 
translation of the idea into a computational model.  At this stage we will introduce 
fundamental concepts in CS through hands-on activity, and we will develop computer 
programs while building simple models prior to building student designed models.    

Stage 4: Parameterize the model. We will discuss relevant variables and parameter 
and experimental design.  We will discuss data collection and analysis and what 
constitutes proof when using data output from models.  

Stage 5: Simulate and collect data.  Use the computational model as a test bed for 
running experiments. In some cases this will involve writing another program that runs 
the model repeatedly over a set of input values; called a parameter sweep.  

Stage 6: Analyze / Interpret. We will review what constitutes proof when using data 
output from models. We will discuss the limitations of the computer model, what 
assumptions were made, and what the model tell us, if anything, about the real world. 
We will mention exploratory uses of models when no theory exists.  

Repeat: We will explain that the “Computational Science Process” is an iterative or 
repeated process.  In evaluating the model one might find verification errors (e.g., bugs 
in code) or validation errors (e.g. when comparing model behavior to real world data 
there are differences that suggest that the wrong assumptions or simplifications were 
made.) In either case, at many points throughout the processes it may be necessary to 
loop back to an earlier stage or begin the whole computational cycle anew. 

An alignment between the Computational Science Cycle and the CSTA K-12 Computer 
Science Standards was constructed by the Santa Fe Institute in 2012 during the 
development of the NM-Computer Science for All program. CSTA K-12 Computer 
Science Standards state: “The use of modeling and simulation, visualization, and 
management of massive data sets has fostered the emergence of a new field that 
bridges science, technology, engineering and math—computational science. This field 
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integrates many aspects of computer science such as the design of algorithms and 
graphics with their application in the sciences.” 

Bridging the two standards using the Computational Science cycle contextualizes 
computer science within modern scientific practice.  Yet, following the stages in the 
Computational Science cycle mechanically is not the intent of the cycle diagram.  As in 
the Framework’s Scientific and Engineering Practices, stages in the Computational 
Science cycle may proceed along different paths. The Use-Modify-Create trajectory for 
student engagement with models guides students through discrete portions of cycle as 
they learn with and about models.  In the Use phase, students are given a completed 
model. They may run experiments using the computer model as an experimental test 
bed by setting different parameters, executing the model, making observations, 
collecting data, and trying to infer the rules of the model.  It is important to note that 
without understanding of the model itself, its underlying assumptions, abstractions, and 
mechanisms, the model as a black box cannot be used to make predictions about real-
world phenomena.  

When modifying a model, students can look at the rules of the model and change the 
rules or add new ones. Because computer models written in computationally-rich 
environments enable users to view and manipulate underlying code, students can view 
the rules behind them, inspect how the rules were translated into code, uncover the 
assumptions of the person who made the model, understand that rules can be changed, 
and see how these changes may affect how the model works. Ultimately, when creating 
a model, students design the model and determine its rules.  They engage in the 
iterative design, implement and test process as they refine their model.  They may 
experience the entire cycle as they run experiments using the computer model as an 
experimental test bed by setting different parameters, executing the model, making 
observations, collecting data, and finally, analyzing the collected data and determining 
to what extent their model reflects the real world. 
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In the crosswalk that follows, the mapping the NGSS Scientific and Engineering 
Practices to the stages of the computational science cycle is shown in the left hand and 
middle columns of Table 1. The mapping of the Computational Science Cycle to the 
CSTA K-12 Computer Science Standards is shown in the middle and right hand column 
of Table 1. 

* Additional learning objectives from the CSTA K-12 Computer Science Standards (such 
as responsible use of technology) were not included in this mapping because they were 
not explicitly addressed in the Computational Science Cycle.  They may be included in 
the future. 
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NGSS Scientific and 
Engineering Practice 

Stages of the Computational Science 
Cycle: 

CSTA K-12 Computer Science 
Standard (CT = Computational 
Thinking; CPP = Computer 
Programming and Practice) 

1. Asking questions  / Defining 
problems. Begin with a question 
about a phenomenon and seek 
to develop theories that can 
provide explanatory answers to 
such questions. Formulate 
empirically answerable 
questions. 

1. Select a real-world problem to study. 
Discuss what makes a problem suitable for 
studying using computational methods.  
Discuss the simplifications made in models 
through abstraction. We will ask: What real-
world issue you are interested in 
investigating? What are measurable 
aspects of the problem? and guide 
participants in constructing questions that 
could be answered through modeling and 
simulation. 

CT-Modeling and simulation 2-10: 
Evaluate the kinds of problems 
that can be solved using modeling 
and simulation. 

CT-Modeling and simulation 1:6-4 
Describe how a simulation can be 
used to solve a problem. 
 
CT-Modeling and simulation 3A-8 
Use modeling and simulation to 
represent and understand natural 
phenomena. 
 

2. Developing and using models. 
Construct and use a wide variety 
of models and simulations to help 
develop explanations about 
natural phenomena. Models 
make it possible to go beyond 
observables and imagine a world 
not yet seen. Models enable 
predictions of the form “if… 
then… therefore…” to be made in 
order to test hypothetical 
explanations. 

2. Simplify the scope of the model using 
abstraction. We will ask: What aspects of 
the problem are important to model? and 
What is happening at different scales of 
observation in the complex system?  The 
scope of the problem will be narrowed to 
one that can be modeled given the 
software and computing resources 
available. We will diagram the model 
components and the simulation loop.  

CT-Abstraction 3A-9:                   
Discuss the value of abstraction to 
manage problem complexity. 
CT-Abstraction 3B-10:            
Decompose a problem by defining 
new functions and classes. 
CT-Data representation 2-8:     
Use visual representation of 
problem state, structure and data. 
CT-Modeling and simulation 2-9:  
Interact with content-specific 
models and simulations to support 
learning and research.  

5. Using mathematics and 
computational thinking.  In 
science, mathematics and 
computation are fundamental 
tools for representing physical 
variables and their relationships.   
They are used for a range of 
tasks, such as constructing 
simulations, statistically analyzing 
data, and recognizing, 
expressing, and applying 
quantitative relationships.   
Mathematical and computational 
approaches enable predictions of 
the behavior of physical systems, 
along with the testing of such 
predictions. 
 

3. From the description and diagram of the 
model, we will move to the translation of 
the idea into a computational model. 
Computational thinking describes a set of 
human thinking skills, habits and 
approaches that are integral to solving 
complex problems using a computer. 
Computational thinking skills involve 
understanding and formulating a problem in 
such as way that its “solution” can be 
systematically and efficiently produced 
through a set of computational steps or 
algorithms to be carried out by a computer. 
The three pillars of computational thinking, 
abstraction, automation, and analysis, are 
intrinsic to computer modeling and 
simulation. 

CT-Modeling and simulation 3A-8:    
Use modeling and simulation to 
represent and understand 
phenomena. 
CT-Abstraction 2-12:                        
Use abstraction to decompose a 
problem into sub problems. 
CT-Data representation 3B-6:  
Compare and contrast simple data 
structures and their uses. 
CT-Data representation 3A-12:  
Describe how mathematical and 
statistical functions, sets, and logic 
are used in computation. 
CT-Algorithms 1:6-2:                  
Develop a simple understanding of 
algorithms using computer-free 
exercises. 
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5. (cont.) Statistical techniques 
are invaluable for assessing the 
significance of patterns or 
correlations. 
 
(Note: computational thinking is 
intrinsic to developing computer 
models and thus practice #5 sits 
within practice #2.) 
 

3. (cont.) Abstraction is the stripping down 
of a problem to its bare essentials and 
capturing common characteristics that can 
be used to represent all other instances. A 
computer model is an abstraction of a real-
world phenomenon or scenario and time is 
abstracted allowing scientists to run 
simulated experiments faster than the 
analogous experiments in real-life. 
Automation entails writing algorithms to 
process information and using a computer 
as a labor saving device that executes 
repetitive tasks quickly and efficiently. 
Computer models use algorithms and 
iterations as their “engines”. Analysis is the 
validation of whether or not the 
abstractions made were correct.  In the 
context of modeling and simulation one 
might ask “Were the right assumptions 
made when narrowing down the problem to 
its bare essentials?” and “Were important 
factors left out of the model?” Thus, in 
terms of modeling and simulation, 
computational thinking is used on many 
levels of a model.  At a high level, the 
“problem” at hand is that of 
describing/encapsulating a phenomena or 
scenario in the form of a model and the 
“solution” is a resulting model that mimics 
the real-world to the required degree (or in 
required ways) such that it can be used as 
an experimental test bed and/or learning 
tool.  At a lower level, computational 
thinking may be the development of 
algorithms that encapsulate the behavior of 
a component of the model or system. 

CT-Algorithms 2-4:            
Evaluate ways that different 
algorithms may be used to solve 
the same problem.  
CT-Algorithms 3A-3:              
Explain how sequence, selection, 
iteration and recursion are the 
building blocks of algorithms. 
CPP-Programming 2-5:       
Implement a problem solution in a 
programming environment using 
looping behavior, conditional 
statements, logic, expressions, 
variables and functions. 
CPP-Programming 3A-3:          
Use various debugging and testing 
methods to ensure program 
correctness.  
CPP-Programming 3A-4:                  
Apply analysis, design and 
implementation techniques to 
solve problems. 
CT-Connections to other fields 2-
15:  Provide examples of 
interdisciplinary applications of 
computational thinking. 
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3. Planning and carrying out 
investigations. Scientific 
investigations may be conducted 
in the field or laboratory. A major 
practice of scientists is planning 
and carrying out a systematic 
investigation, which requires the 
identification of what is to be 
recorded and what are to be 
treated as the dependent and 
independent variables.  
 

4. (Planning investigations)  Parameterize 
the model. We will discuss relevant 
variables and parameter and experimental 
design.  We will discuss data collection and 
analysis and what constitutes proof when 
using data output from models. 

CT-Modeling and simulation 3B-8:    
Use models and simulation to help 
formulate, refine, and test 
scientific hypotheses. 
CPP-Data collection /3A-11:  
Describe techniques for locating 
and collecting small-and large-
scale data sets. 

5. (Carrying out investigations) Simulate 
and collect data.  Use the computational 
model as a test bed for running 
experiments. In some cases this will 
involve writing another program that runs 
the model repeatedly over a set of input 
values; called a parameter sweep. 

CPP-Data collection and analysis 
3B-8:  Deploy various data 
collection techniques for different 
types of problems. 

4. Analyzing and interpreting 
data. Observations and data 
collected from investigations are 
used to test existing theories and 
explanations or to revise and 
develop new explanations. 
Scientists use a range of tools to 
identify the significant features 
and patterns in the data. 

6. Analyze / Interpret: We will review what 
constitutes proof when using data output 
from models. We will discuss the limitations 
of the computer model, what assumptions 
were made, and what the model tell us, if 
anything, about the real world. We will 
mention exploratory uses of models when 
no theory exists. 
 
We compare outcomes with what is known 
about the real world—to see if they “make 
sense. 
 
 

CPP- Data collection and analysis 
2-9:  Collect and analyze data that 
are output from multiple runs of a 
computer program. 
CT-Modeling and simulation 3B-9:  
Analyze data and identify patterns 
through modeling and simulation. 
CT-Modeling and simulation 2-11:  
Analyze the degree to which a 
computer model accurately 
represents the real world. 
CPP- Data collection and analysis 
3B-7:  Use data analysis to 
enhance understanding of 
complex natural and human 
systems. 

6. Constructing explanations 
7. Engaging in argument from 
evidence 
8. Obtaining, evaluating, and 
communicating information. 

These three practices occur throughout the 
Computational Science Cycle, especially 
during the comparison of model generated 
outcomes with what is known about the 
real world. We are engaging in argument 
from evidence and constructing 
explanations while evaluating and 
communicating information. The 
“Computational Science Process” is an 
iterative or repeated process.  In evaluating 
the model one might find verification errors 
(e.g., bugs in code) or validation errors 
(e.g. when comparing model behavior to 
real world data there are difference that 
suggest that the wrong assumptions or 
simplifications were made).  In either case, 
at many points throughout the processes it 
may be necessary to loop back to an 
earlier stage or begin the whole 
computational cycle anew. 
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Aligning the NGSS Disciplinary Core Idea of Engineering, Technology, 
and Applications of Science and the CSTA K-12 Computer Science 
Standards  

Irene A. Lee 
 

Background 
 
Chapter 3 of the Framework for K-12 Science Education describes how student’s 
understanding of engineering practices is to develop in the classroom as they use 
engineering practices to acquire and apply scientific knowledge.  These objectives were 
integrated in the NGSS within Crosscutting Concepts (under Connections to 
Engineering, Technology and Applications of Science) and as a standalone Disciplinary 
Core Idea.  The Connections to Engineering, Technology and Applications are linked 
back to the DCI of ETS by the themes “Interdependence of Science, Engineering and 
Technology” and “Influence of Science, Engineering, and Technology on Society and 
the Natural World”.  The CSTA K-12 Computer Science Standards are focused on 
learning outcomes specific to the discipline of computer science and therefore do not 
address “Engineering Practices” per se, They do, however, consider aspects of the 
process of designing, developing, and testing algorithms, models and simulations, and 
software artifacts.  
 
Another area of commonality between the NGSS Disciplinary Core Idea of Engineering, 
Technology, and Applications of Science and the CSTA K-12 Computer Science 
Standards appear in the areas of responsible use and impacts of technology.  In the 
section addressing Community, Global and Ethical Impacts.  The CSTA K-12 Computer 
Science Standards state “the ethical use of computers and networks is a fundamental 
aspect of computer science at all levels and should be seen as an essential element of 
both learning and practice.” [CSTA K-12 Computer Science Standards, 2011. Pg 11] 
Similarly, the NGSS disciplinary core idea “Links among engineering, technology, 
science and society” addresses the interrelationship among science, engineering and 
society and states that “students should develop an understanding that technological 
advances can have profound impact on society and the environment” (Vol. II, pp.108–
111, including the “Science, Technology, Society, and the Environment Connections 
Matrix”).  
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NGSS Core Disciplinary Ideas: Engineering, 
Technology and Applications of Science. 
ETS1: Engineering Design 
ETS2: Links among Engineering, Technology,  
           Science and Society. 

CSTA K-12 CS Standards 
 ( CPP = Computer Programming and Practice) 
 ( CCD = Computers and Communication Devices) 
 ( COL = Collaboration) 
 ( CGE = Community, Global and Ethical Impacts) 

CORE IDEA ETS1: ENGINEERING DESIGN 
How do engineers solve problems? 

Seen in CSTA Computational Thinking Strand. 

ETS1.A. Defining and Delimiting an Engineering Problem 
What is a design for? What are the criteria and constraints 
of a successful solution? 
The engineering design process begins with the 
identification of a problem to solve and the specification of 
clear goals, or criteria, that the final expected end-user of a 
technology or process, address such things as how the 
product or system will function (what job it will perform and 
how), its durability, and its cost. Criteria should be 
quantifiable whenever possible and stated so that one can 
tell if a given design meets them. Engineers must contend 
with a variety of limitations, or constraints, when they 
engage in design. Constraints, which frame the salient 
conditions under which the problem must be solved, may 
be physical, economic, legal, political, social, ethical, 
aesthetic, or related to time and place. 
In terms of quantitative measurements, constraints may 
include limits on cost, size, weight, or performance, for 
example. And although constraints place restrictions on a 
design, not all of them are permanent or absolute. 

CT-Modeling and simulation 2-10:  
Evaluate the kinds of problems that can be solved 
using modeling and simulation.   

Grade Band Endpoints for ETS1.A 
By the end of grade 8. The more precisely a design task’s 
criteria and constraints can be defined, the more likely it is 
that the designed solution will be successful. Specification 
of constraints includes consideration of scientific principles 
and other relevant knowledge that are likely to limit possible 
solutions (e.g., familiarity with the local climate may rule out 
certain plants for the school garden). 
 

 CT-Modeling and simulation 2-10: Evaluate the kinds 
of problems that can be solved using modeling and 
simulation. 

Grade Band Endpoints for ETS1.A 
By the end of grade 12. Design criteria and constraints, 
which typically reflect the needs of the end-user of a 
technology or process, address such things as the 
product’s or system’s function (what job it will perform and 
how), its durability, and limits on its size and cost. Criteria 
and constraints also include satisfying any requirements set 
by society, such as taking issues of risk mitigation into 
account, and they should be quantified to the extent 
possible and stated in such a way that one can tell if a 
given design meets them.  

 CT-Modeling and simulation 2-10: Evaluate the kinds 
of problems that can be solved using modeling and 
simulation. 
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ETS1.B: Developing Possible Solutions 
What is the process for developing potential design 
solutions? 

Seen in CSTA Strands Computing Practice and 
Programming, and Computational Thinking. 

Grade Band Endpoints for ETS1.B 
By the end of grade 8. A solution needs to be tested, and 
then modified on the basis of the test results, in order to 
improve it. There are systematic processes for evaluating 
solutions with respect to how well they meet the criteria and 
constraints of a problem. Sometimes parts of different 
solutions can be combined to create a solution that is better 
than any of its predecessors. In any case, it is important to 
be able to communicate and explain solutions to others. 
Models of all kinds are important for testing solutions, and 
computers are valuable tools for simulating systems. 
Simulations are useful for predicting what would happen if 
various parameters of the model were changed, as well as 
for making improvements to the model based on peer and 
leader (e.g., teacher) feedback. 

CT-Abstraction 1:6-5 
Make a list of sub-problems to consider while 
addressing a larger problem. 

CPP-Programming 2-5. 
Implement problem solutions using a programming 
language including: looping behavior, conditional 
statements, logic, expressions, variables, and 
functions.  

CT-Abstraction 2-12. 
Use abstraction to decompose a problem into sub-
problems. 

CT-Problem Solving 1:6. 
Understand and use the basic steps in algorithmic 
problem solving. 

CT-Problem Solving 2-1.  
Use the basic steps in algorithmic problem solving to 
design solutions. 

Grade Band Endpoints for ETS1.B 
By the end of grade 12. Complicated problems may need 
to be broken down into simpler components in order to 
develop and test solutions. When evaluating solutions, it is 
important to take into account a range of constraints, 
including cost, safety, reliability, and aesthetics, and to 
consider social, cultural, and environmental impacts.  
Testing should lead to improvements in the design through 
an iterative procedure. Both physical models and 
computers can be used in various ways to aid in the 
engineering design process. Physical models, or 
prototypes, are helpful in testing product ideas or the 
properties of different materials. Computers are useful for a 
variety of purposes, such as in representing a design in 3-D 
through CAD software; in troubleshooting to identify and 
describe a design problem; in running simulations to test 
different ways of solving a problem or to see which one is 
most efficient or economical; and in making a persuasive 
presentation to a client about how a given design will meet 
his or her needs. 

CT-Abstraction 3B-10. 
Decompose a problem by defining new functions and 
classes. 
CT-Abstraction 3A-9:  
Discuss the value of abstraction to manage problem 
complexity. 
CT-Problem solving 3A-1. 
Use predefined functions and parameters, classes, 
and methods to divide a complex problem into simpler 
parts. 
CT-Problem solving 3A-2.  
Describe a software development process used to 
solve software problems. 
CPP-Programming 3A-3. 
Use various debugging and testing methods to ensure 
program correctness. 

CPP-Programming 3A-4.  
Apply analysis, design and implementation techniques 
to solve problems. 
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ETS1.C: Optimizing the Design Solution 
How can the various proposed design solutions be 
compared and improved? 

CSTA Strands Computational Thinking, and 
Computing Practice and Programming. 

Grade Band Endpoints for ETS1.C 
By the end of grade 8. There are systematic processes for 
evaluating solutions with respect to how well they meet the 
criteria and constraints of a problem. Comparing different 
designs could involve running them through the same kinds 
of tests and systematically recording the results to 
determine which design performs best. Although one 
design may not perform the best across all tests, identifying 
the characteristics of the design that performed the best in 
each test can provide useful information for the redesign 
process—that is, some of those characteristics may be 
incorporated into the new design. This iterative process of 
testing the most promising solutions and modifying what is 
proposed on the basis of the test results leads to greater 
refinement and ultimately to an optimal solution. Once such 
a suitable solution is determined, it is important to describe 
that solution, explain how it was developed, and describe 
the features that make it successful. 
 

CT-Algorithms 2-4.  
Evaluate ways that different algorithms may be used to 
solve the same problem. 

Grade Band Endpoints for ETS1.C 
By the end of grade 12. The aim of engineering is not 
simply to find a solution to a problem but to design the best 
solution under the given constraints and criteria. 
Optimization can be complex, however, for a design 
problem with numerous desired qualities or outcomes. 
Criteria may need to be broken down into simpler ones that 
can be approached systematically, and decisions about the 
priority of certain criteria over others (trade-offs) may be 
needed. The comparison of multiple designs can be aided 
by a trade-off matrix. Sometimes a numerical weighting 
system can help evaluate a design against multiple criteria. 
When evaluating solutions, all relevant considerations, 
including cost, safety, reliability, and aesthetic, social, 
cultural, and environmental impacts, should be included. 
Testing should lead to design improvements through an 
iterative process, and computer simulations are one useful 
way of running such tests. 

CPP-Programming 3A-3. 
Use various debugging and testing methods to ensure 
program correctness. 
CPP-Programming 3A-4. 
Apply analysis, design and implementation techniques 
to solve problems. 
CT-Algorithms 3A-4. 
Compare techniques for analyzing massive data 
collections. 

CT-Algorithms 3B-4. 
Evaluate algorithms by their efficiency, correctness 
and clarity. 

CT-Data representation 3B-6. 
Compare and contrast simple data structures and their 
uses. 

CT-Problem solving 3A-2. 
Describe a software development process used to 
solve software problems. 
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ETS2.A: Interdependence of Science, Engineering, and 
Technology. 

Seen in CSTA Strands Computational Thinking and 
Community, Global and Ethical Impacts. 

Grade Band Endpoints for ETS2.A 
By the end of grade 8. Engineering advances have led to 
important discoveries in virtually every field of science, and 
scientific discoveries have led to the development of entire 
industries and engineered systems. In order to design 
better technologies, new science may need to be explored 
(e.g., materials research prompted by desire for better 
batteries or solar cells, biological questions raised by 
medical problems). Technologies in turn extend the 
measurement, exploration, modeling, and computational 
capacity of scientific investigations. 

CT-Connections to other fields 1:6-6 
Understanding the connections between computer 
science and other fields. 
CT-Connections to other fields 2-14. 
Provide examples of interdisciplinary applications of 
computational thinking. 
 
CT-Modeling and Simulation 2-9. 
Interact with content-specific models and simulations 
to support learning and research. 
CT-Modeling and Simulation 2-10. 
Evaluate what kinds of problems can be solved using 
modeling and simulation. 
CT-Modeling and Simulation 2-11. 
Analyze the degree to which a computer model 
accurately represents the real world. 

Grade Band Endpoints for ETS2.A 
By the end of grade 12. Science and engineering 
complement each other in the cycle known as research and 
development (R&D). Many R&D projects may involve 
scientists, engineers, and others with wide ranges of 
expertise. For example, developing a means for safely and 
securely disposing of nuclear waste will require the 
participation of engineers with specialties in nuclear 
engineering, transportation, construction, and safety; it is 
likely to require as well the contributions of scientists and 
other professionals from such diverse fields as physics, 
geology, economics, psychology, and sociology. 

CPP-Programming 2-5. 
Implement problem solutions using a programming 
language including: looping behavior, conditional 
statements, logic, expressions, variables, and 
functions. 
 
CPP-Programming 3A-3. 
Use various debugging and testing methods to ensure 
program correctness. 
CPP-Programming 3A-4. 
Apply analysis, design and implementation techniques 
to solve problems. 

CT-Modeling and Simulation 3A-8. 
Use modeling and simulation to represent and 
understand natural phenomena. 

CT-Modeling and Simulation 3B-8. 
Use models and simulations to help formulate, refine 
and test scientific hypotheses. 

CT-Modeling and Simulation 3B-9. 
Analyze data and identify patterns through modeling 
and simulation. 
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ETS2.B: Influence of Engineering, Technology and 
Science on Society and the Natural World. 

Seen in CSTA Strand Community, Global and 
Ethical Impacts. 

Grade Band Endpoints for ETS2.B 
By the end of grade 8. All human activity draws on natural 
resources and has both short- and long-term 
consequences, positive as well as negative, for the health 
of both people and the natural environment. The uses of 
technologies and any limitations on their use are driven by 
individual or societal needs, desires, and values; by the 
findings of scientific research; and by differences in such 
factors as climate, natural resources, and economic 
conditions. Thus technology use varies from region to 
region and over time. Technologies that are beneficial for a 
certain purpose may later be seen to have impacts (e.g., 
health-related, environmental) that were not foreseen. In 
such cases, new regulations on use or new technologies (to 
mitigate the impacts or eliminate them) may be required. 

CGE-Impacts of Technology 1:6-2.  
Identify the impacts of technology on personal life and 
society.  
CGE-Impacts of Technology 2-2. 
Demonstrate knowledge of changes in information 
technologies over time and the effects those changes 
may have on education, the workplace, and society. 
CGE-Impacts of Technology 2-3. 
Analyze the positive and negative impacts of 
computing on human culture. 

Grade Band Endpoints for ETS2.B 
By the end of grade 12. Modern civilization depends on 
major technological systems, including those related to 
agriculture, health, water, energy, transportation, 
manufacturing, construction, and communications. 
Engineers continuously modify these technological systems 
by applying scientific knowledge and engineering design 
practices to increase benefits while decreasing costs and 
risks. Widespread adoption of technological innovations 
often depends on market forces or other societal demands, 
but it may also be subject to evaluation by scientists and 
engineers and to eventual government regulation. New 
technologies can have deep impacts on society and the 
environment, including some that were not anticipated or 
that may build up over time to a level that requires attention 
or mitigation. Analysis of costs, environmental impacts, and 
risks, as well as of expected benefits, is a critical aspect of 
decisions about technology use. 

CGE-Impacts of Technology 3A-3. 
Discuss the impact of computing technology on 
business and commerce. 
CGE-Impacts of Technology 3A-3. 
Describe the role that adaptive technology can play in 
the lives of people with special needs. 
CGE-Impacts of Technology 3A-4. 
Compare the positive and negative impacts of 
computing on culture. 
CGE-Impacts of Technology 3B-2. 
Analyze the beneficial and harmful effects of 
computing innovations. 
CGE-Impacts of Technology 3B-3. 
Summarize how financial markets, transactions, and 
predictions have been transformed by automation. 
CGE-Impacts of Technology 3B-4. 
Summarize how computation has revolutionized the 
way people build real and virtual organizations and 
infrastructures. 

 

 

 


