

1
	

Middle School CS in Science Standards Crosswalk

Project GUTS has developed a series of modules for Code.org that augment existing lessons in Earth,
Life and Physical Science curricula. These Code.org “Computer Science in Science” modules integrate
computer science through the use, modification, and creation of computer models and simulations within
the context of modern scientific practice.

Prior to creating these modules (and/or adapting existing modules from the Project GUTS curriculum for
this purpose), crosswalks between the NRC Framework for K-12 Science Education and CSTA K-12
Computer Science Standards; and between the Next Generation Science Standards (NGSS) and the
CSTA K-12 Computer Science Standards were conducted to elucidate the commonalities that could
serve as the basis for a set of learning outcomes addressed in the Code.org modules.

The first step in creating the crosswalks was to compare the two Standards in terms of the goals, context,
approach, breadth, depth, content, and practices included. The document “1. Overview of the CSTA K-12
CS Standards and NGSS” contains a broad comparison of the Standards. The document acquaints the
general audience with the two Standards and serves as a foundation for understanding the crosswalks.

The diagram “2. Computational Science in the CSTA and NGSS” frames Code.org’s Computer Science in
Science modules in the context of Computational Science, Modeling and Simulation, the Computer
Science Teachers Association K-12 Computer Science Standards and the Next Generation Science
Standards.

Document “3. Augmenting Practices” describes how Computational Science practices augment traditional
scientific and engineering practices. Table 3-2 of the “Framework for K-12 Science Education: Practices,
Crosscutting Concepts and Core Ideas” served as a starting point for this document. This document
provides an introduction to Computational Science for those unfamiliar with the practice.

The “4. Aligning the Framework and CSTA” document contains a preface and the crosswalk between the
NRC Framework’s Scientific Practices and the CSTA K-12 Computer Science Standards.

The “5. Aligning NGSS DCI ETS and CSTA” document contains a preface and the crosswalk between the
NGSS Disciplinary Core Idea of Engineering, Technology and Applications of Science (ETS) and the
CSTA K-12 Computer Science Standards.

2
	

3
	

Comparison of the CSTA K-12 Computer Science Standards and the
Next Generation Science Standards

This “Overview” is a broad comparison of the goals, context, approach, breadth/depth, and
content /practices included in the CSTA K-12 Computer Science Standards and the Next
Generation Science Standards.

n.b.: This document originated from Achieve Inc. and came pre-filled with Achieve’s responses
to a series of twenty-two questions. The responses to the questions from the perspective of the
CSTA K-12 Computer Science Standards were drawn from the CSTA Standards themselves.
Subsequently, upon review by Achieve, it was determined that questions 4, 6, 11, and 12 could
be omitted. After the questions were removed, the remaining questions were renumbered.

General Information on Standards Development and Design
Question #1: What process was used to develop the standards, including what research and

background materials (NSES, etc.) are the standards documents based on?

CSTA : The CSTA K-12 Computer Science standards were developed in a year-long
process led by curriculum committee of the CSTA. Members of the committee
were assigned to grade bands based on their experience teaching K-12
Computer Science. Three grouping were made, K-5, 6-8, and 9-12. Each group
reviewed the existing K-12 CS standards paying special attention to their
assigned grade band, and suggested edits and adapted the standards to reflect
changes in the field. All drafts of the report were informed by feedback from
many organizations and individuals. In all two rounds of review and three drafts
were produced. The standards were published on the CSTA Web site
(http://csta.acm.org) as well as in hardcopy form. The Computer Science
Standards aim to provide a framework within which state departments of
education and school districts can revise their curricula to better educate young
people in this important subject area and thus better prepare students for
effective citizenship in the 21st century. [CSTA K-12 Computer Science
Standards, 2011. Pg 1.]

NGSS : The NGSS were developed in a state-led process. Twenty-six states signed on
to be Lead State Partners. The states provided guidance and direction in the
development of the NGSS to the 41-member writing team, composed of K–20
educators and experts in both science and engineering. In addition to six
reviews by the lead states and their committees, the NGSS were reviewed
during development by hundreds of experts during confidential review periods
and tens of thousands of members of the general public during two public
review periods. The NGSS content and structure are based on the National
Research Council’s Framework for K–12 Science Education (2012), and an
NRC review found that the NGSS were faithful to the Framework. [NGSS
Introduction (NGSS Lead States, 2013, Vol. I, p. xvi);
http://www.nextgenscience.org/lead-state-partners;
http://www.nextgenscience.org/writing-team;
http://www.nextgenscience.org/critical-stakeholders; National Research Council

4
	

Review of the Next Generation Science Standards (NGSS Lead States, 2013,
Vol. I, p. v)]

Question #2: Which part(s) of the standards documentation represent the assessable
components?

CSTA: The assessable components are the learning outcomes. The standards for K–
12 computer science education are presented in a learning objective-based
format that identifies the specific computer science concepts and skills students
should achieve at each of the three levels (grades K-6, 6-9, and 9-12). [CSTA K-
12 Computer Science Standards, 2011. Pg. 12.]

NGSS: The performance expectations of the NGSS are the assessable components.
[NGSS Introduction (NGSS Lead States, 2013, Vol. I, p. xviii)]

Question #3: What parts of the science standards are required of all high school students,
and to what extent do these fit the time restrictions of a typical school year?

CSTA: None.

NGSS: The NGSS focuses on a limited number of core ideas in science and
engineering that build coherently over time throughout K–12 in an effort to foster
a greater depth of understanding on a few fundamental concepts within the
constraints of the typical school year (Vol. II, pp. 40, 113–115). These
standards are expected of all students, including at the high school level, with
opportunity for accelerated students to continue past the requirement of the
standards (Vol. II, pp. 25, 31, 114). However, having expectations for all
students doesn’t mean that all students will take the same courses in high
school. There are many different ways to structure different courses (e.g., CTE
courses, integrated science, senior project, etc.) that could help different
students reach and exceed proficiency on the standards. [Appendix D (NGSS
Lead States, 2013, Vol. II, pp.25–39), Appendix E (NGSS Lead States, 2013,
Vol. II, pp.40–47), Appendix K (NGSS Lead States, 2013, Vol. II, pp.113–136)]

Nature of Science and Methods of Inquiry in Science
Question #4: What aspects of scientific inquiry and processes (e.g., skills and habits of mind)

are expressed in the standards, and how are they related to or integrated with
the content?

CSTA: Aspects of scientific inquiry and processes are interwoven with content in the
computer modeling and simulation portion of the Computational Thinking strand.
Scientific practice includes the use, creation, and analysis of computer models
and simulations for STEM inquiry. Acting as computational scientists, students
must learn, understand, and use computational thinking, computer science
concepts, and computer programming constructs. As users and evaluators of
models, students must be able to look “under the hood” and understand the
mechanisms, abstractions and algorithms implemented in a model using a
computer programming language (as well as evaluate what has been left out of

5
	

a model). As creators of their own models, students must understand the
computational science process and use computational thinking and computer
science to design, implement, test and revise their model. As young
computational scientists, students must learn to use models as experimental
test-beds and conduct experiments that sweep multi-dimensional parameter
spaces. The data output from these virtual experiments are subsequently
analyzed and interpreted to gain an understanding of the underlying system or
phenomenon. Finally, students must be able to analyze their creations and
determine to what extent their model represents the real world. Often this entails
comparing simulation-generated output and real-world data captured of a similar
phenomenon. Within the computational science process, students construct
theories, design computational models that embody those theories, and then
execute the models with various inputs (simulation) and gather evidence that
support or refute their theories. Similarly, teachers charged with preparing
students as computational scientists must also learn these concepts and
practices in order to teach them. [CSTA K-12 Computer Science Standards,
2011.]

NGSS: The NGSS are written as performance expectations built from the three
dimensions described in the NRC Framework (2012), including Science
Practices (Vol. II, p. 48). These eight practices are the behaviors that scientists
engage in as they investigate and build models and theories about the natural
world: Asking questions; Developing and using models; Planning and carrying
out investigations; Analyzing and interpreting data; Using mathematics and
computational thinking; Constructing explanations; Engaging in argument from
evidence; and Obtaining, evaluating, and communicating information. The
practices are integrated with the disciplinary core ideas and crosscutting
concepts in every NGSS performance expectation, such that students are
expected to demonstrate their understanding of the core ideas and crosscutting
concepts in the context of the practices. For an example, see HS-ESS1 (Vol. I,
pp. 119–121). [Appendix F (NGSS Lead States, 2013, Vol. II, pp.48–78)]

Question #5: In what ways do the standards encourage students to utilize multiple avenues of
learning (e.g., learning by doing, direct instruction, reading, etc.) and to apply
content material in novel situations?

CSTA: The CSTA standards encourage students to utilize multiple avenues of learning
such as “learning by doing” as exemplified by the action verbs “use, build,
modify, create, make, interact with, act out, analyze, and evaluate”; and
“reflective practice” as exemplified by the verbs “explain, classify, describe, and
discuss”. [Computer Science Standards, 2011. Pg 56-63.]

NGSS: The performance expectations are not a curriculum and do not dictate methods
of instruction. Instead, they are statements of what students should know and
be able to do at the end of each grade band (Vol. I, p. xxiii). The performance
expectations can and should be met through a number of different means (e.g.
Vol. II, p.101) allowing for multiple avenues of learning for diverse student
groups (Vol. II, p. 35) as well as encouraging innovation and creativity in
instruction. Importantly, the integration of science and engineering practices
into the performance expectations in the NGSS ensures that students will be

6
	

expected to demonstrate proficiency in many different kinds of skills, thereby
increasing the likelihood that instruction will incorporate many different kinds of
learning modes. [Appendix D (NGSS Lead States, 2013, Vol. II, pp.25–39);
Appendix F (NGSS Lead States, 2013, Vol. II, pp.49–50)]

Connections / Relationships Among Standards at Different Grade Levels
Question #6: In what ways are the standards designed to build from grade level to grade level

in science content, depth of content understanding, and the application of
scientific inquiry and processes?

CSTA: These standards provide a three-level framework for computer science. The first
two levels are aimed at grades K–6 and 6–9 respectively. We expect that the
learning outcomes in Level 1 will be addressed in the context of other academic
subjects. The learning outcomes in Level 2 may be addressed either through
other subjects or in discrete computer science courses. Level 3 is divided into
three separate exemplar courses: Computer Science in the Modern World,
Computer Science Principles, and Topics in Computer Science. The standards
provided in Computer Science in the Modern World reflect learning content that
should be mastered by all students; Computer Science Principles and Topics in
Computer Science are courses intended for students with special interest in
computer science and other computing careers, whether they are college-bound
or not. [CSTA K-12 Computer Science Standards, 2011. Pg iii.]

NGSS: The NGSS focuses on a limited number of core ideas in science and
engineering that build coherently over time throughout K–12 (Vol. II, pp. 41–47,
“Disciplinary Core Idea Progression charts”), such that by the end of high school
all students are expected to have developed an accurate and thorough
understanding of each core idea. The depth of understanding appropriate for
each grade band was specified by the NRC Framework (2012). Student
performance expectations at each grade band form a foundation for the
achievement of the next grade band’s associated performance expectation(s).
Practices and crosscutting concepts also grow in complexity and sophistication
across the grades (Vol. II, pp.49–67, “practices tables”; Vol. II, pp.80–88
“crosscutting concept tables”), allowing for a greater depth of understanding of
the core ideas and crosscutting concepts over time, as well as a greater mastery
of science and engineering practices. [Appendix E (NGSS Lead States, 2013,
Vol. II, pp.40–47), Appendix F (NGSS Lead States, 2013, Vol. II, pp.48–78),
Appendix G (NGSS Lead States, 2013, Vol. II, pp.79–95)]

Question #7: If there are any “outlier concepts” within the standards, how might they relate
back to or reinforce the other concepts in the standards?

CSTA: The CSTA K-12 CS Standards do not include outliers concepts.

NGSS: The NGSS are standards for all students, and focus on a limited number of core
ideas in science (Vol. II, p. 40). These core ideas were derived from the NRC
Framework (2012) and met the Framework committee’s criteria for inclusion in
expectations for all students. To ensure that the NGSS scope was teachable,
and that there can be time in a typical classroom to help all students build depth
of understanding in these core ideas, the NGSS does not include concepts that

7
	

fall outside the direct progression to each core idea. However, the NGSS
should not be viewed as a ceiling for instruction. Students who are proficient in
the NGSS can and should go beyond to make connections and apply what
they’ve learned to other areas of interest. [Appendix E (NGSS Lead States,
2013, Vol. II, pp.40–47)]

Evaluation of Understanding and Application of Content Knowledge
Question #8: In what ways do the standards encourage students to apply content knowledge

or to use content knowledge in novel situations to build and demonstrate depth
of understanding?

CSTA: In many strands, students are encouraged to apply content knowledge to build
artifacts that demonstrate depth of understanding. Students are asked to apply
content knowledge or use content knowledge in novel situations to build or
demonstrate depth of understanding. For example, in the CT strand students
are directed to “critically examine classical algorithms and implement an original
algorithm”. In CPP strand, they are asked to “Anticipate future careers and the
technologies that will exist”. [CSTA K-12 Computer Science Standards, 2011.
pp. 56-59.]

NGSS: Decades of science education research have indicated that the best way to help
students learn content deeply is to provide opportunities to practice applying
content material, particularly in novel situations (e.g. Grabinger and Dunlap,
1995). By building the performance expectations from the three dimensions
described in the NRC Framework (2012), the NGSS requires application of a
relevant practice of science or engineering with a core disciplinary idea(s) and
connects a crosscutting concept(s) with that core idea. Through the repeated
application of the science and engineering practices and crosscutting concepts
to different core ideas (especially among different disciplines) and through the
explicit connections between core ideas in different performance expectations,
the students are expected to use these in different and novel contexts, which
enhances depth of understanding of all three of the dimensions (Vol. II, p. 49–
50, 80–81). In addition, many performance expectations throughout K–12
explicitly describe engineering applications for core ideas. [Appendix F (NGSS
Lead States, 2013, Vol. II, pp.48–78), Appendix G (NGSS Lead States, 2013,
Vol. II, pp.79–95)]

Question #9: In what ways do the standards require students to combine or synthesize
multiple content ideas in order to demonstrate a deeper understanding of a
large, broad theme within science or a specific scientific discipline?

CSTA: The CSTA K-12 Standards contain learning outcomes in computational thinking
that require students to combine or synthesize multiple content areas and
processes to demonstrate a deeper understanding of computational science and
how computer models and simulation can be used to create new knowledge
and/or solve problems. The Computational Thinking strand synthesizes learning
outcomes in problem solving, algorithms, data representation, abstraction, and
modeling and simulation, as well as connections to other fields. [CSTA K-12

8
	

Computer Science Standards, 2011. Computational Thinking pp. 9-10 and 56-
57.]

NGSS: The NGSS is composed of student performance expectations, which are
statements of what students should know and be able to do at the end of each
grade band (Vol. I, p.xxiii). In the NGSS, performance expectations are grouped
together based on how they support or build up to a core idea. In this way, a
single performance expectation that requires the student to apply a science or
engineering practice to one aspect of a core idea can be combined with the
other performance expectations in the group to address multiple facets of the
disciplinary core idea, leading to a greater depth of understanding of that core
idea. For example, all of the components of the disciplinary core idea “HS-
ESS1: Earth’s Place in the Universe” listed in the disciplinary core idea
foundation box are addressed in total by the six performance expectations HS-
ESS1-1 to HS-ESS1-6 (Vol. I, pp. 119–121). By demonstrating proficiency in
all the performance expectations of HS-ESS1, the student will have
demonstrated a deeper understanding of the broader theme of the core idea.
Each of the core ideas also builds in complexity from grade level to grade level,
with increasingly more sophisticated performance expectations that address that
core idea at each grade level band (Vol. II, pp. 41-47). [“How to Read the Next
Generation Science Standards” (NGSS Lead States, 2013, Vol. I, pp. xxii-xxvi),
Appendix E (NGSS Lead States, 2013, Vol. II, pp. 40–47)]

Incorporation of Engineering Technology Standards
Question #10: How do the standards define engineering skills and habits of mind, and in what

ways are students expected to demonstrate an understanding of these?

CSTA: The CSTA K-12 Computer Science Standards are focused on learning
outcomes specific to the discipline of computer science and therefore do not
address “Engineering Practices” per se, They do, however, consider aspects of
the process of designing, developing, and testing algorithms, models and
simulations, and software artifacts. Both engineering and computer science put
forth methods for problem solving using an iterative approach. [CSTA K-12
Computer Science Standards, 2011. Pg 4.]

NGSS: Engineering practices are raised to the level of traditional science practices and
include behaviors that engineers engage in, such as “defining problems” and
“designing solutions” (Vol. II, pp.49,104). There are eight engineering practices
defined by the NGSS and the NRC Framework (2012) – most of which have
equivalents in science: Defining problems; Developing and using models;
Planning and carrying out investigations; Analyzing and interpreting data; Using
mathematics and computational thinking; Designing solutions; Engaging in
argument from evidence; and Obtaining, evaluating, and communicating
information. These practices are incorporated throughout the NGSS with the
disciplinary core ideas and crosscutting concepts in performance expectations,
such that students are expected to demonstrate engineering design methods as
applied to the content of the core ideas. The NGSS also expect students to
develop an understanding of some core engineering design principles—the
disciplinary core idea ETS1 is devoted to describing engineering as a discipline,

9
	

and serves as the foundation for engineering-specific performance expectations
from K–12. [Appendix F (NGSS Lead States, 2013, Vol. II, pp.48–78), Appendix
I (NGSS Lead States, 2013, Vol. II, pp.103–107)]

Question #11: How are students expected to demonstrate increasing levels of proficiency over
time in the use of engineering design methods, including how to incorporate
”failure” in the design process?

CSTA: The iterative design process, including testing and debugging, are central to
Computer Science as seen in CT-Problem solving 3A-2: Describe a software
development process used to solve software problems; CPP-Programming 3A-
3: Use various debugging and testing methods to ensure program correctness;
and CPP-Programming 3A-4: Apply analysis, design and implementation
techniques to solve problems. [CSTA K-12 Computer Science Standards, 2011.]

NGSS: The NGSS includes the core idea of engineering design that requires use of
engineering methods and practices that build coherently and grow in complexity
and sophistication from grade level to grade level (Vol. II, pp. 49–67; 104–107).
Of the three components of this core idea, “optimizing the design solution”
requires students to test their designs and to refine the final design, addressing
any “failures” (Vol. II, p.104; e.g. HS-ETS1, Vol. I, pp. 129–130). [Appendix F
(NGSS Lead States, 2013, Vol. II, pp. 48–78), Appendix I (NGSS Lead States,
2013, Vol. II, pp.103–107)]

Incorporation of Engineering Design and Methods into Science Standards
Question #12: For which students are the engineering-related standards a requirement (e.g.,

graduation requirements)?

CSTA: None

NGSS: Engineering design is integrated throughout the standards and is required of
every student in two ways: 1) with science specific performance expectations
that apply engineering practices and 2) with engineering-specific performance
expectations that focus on engineering design at the K–2, 3–5, 6–8, and 9–12
grade level bands (Vol. II, pp. 104–107). [Appendix I (NGSS Lead States, 2013,
Vol. II, pp.103–107)]

Question #13: How and to what degree are engineering methods and the design process
coupled with the science content standards to enhance the learning of both?

CSTA: Engineering methods and the engineering design process are not tightly
coupled with the computer science content standards. Computer Science
students learn skills that are applicable in many contexts including engineering.
Computer science students learn logical reasoning, algorithmic thinking, design
and structured problem solving—all concepts and skills that are valuable well
beyond the computer science classroom. Students gain awareness of the
resources required to implement, test, and deploy a solution and how to deal

10
	

with real-world constraints. These skills are applicable in many contexts, from
science and engineering to the humanities and business, and they have enabled
deeper understanding in these and other areas. [CSTA K-12 Computer Science
Standards, 2011. Pg 3 and Computing Practice and Programming 3A-4 “Apply
analysis, design & implementation techniques to solve problems” and 3A-3 “Use
various debugging and testing methods to ensure program correctness”.]

NGSS: Engineering method and design, as both practice and disciplinary content, are
coupled with science content in each grade band of the NGSS (Vol. II, p. 104).
[Appendix I (NGSS Lead States, 2013, Vol. II, pp.103–107)]

Course Sequencing and Relationships with Courses in other Content Areas
Question #14: In what ways do the standards provide a foundation for AP courses or other

advanced course work?

CSTA: The CSTA K-12 CS standards at Levels 1 and 2 provide a foundation for the AP
CS A course that can be offered as an option at level 3 (HS). Level 3 provides
three suggested exemplar course configurations, one of which is an AP CS
course. [CSTA K-12 Computer Science Standards, 2011. Pg 22.]

NGSS: The NGSS performance expectations are specifically designed not to limit the
curriculum and to allow students interested in continuing their coursework in
science or engineering the opportunity to do so (Vol. II, pp. 113–115). The
NGSS performance expectations provide a foundation for rigorous advanced
courses in science or engineering. During the NGSS development process,
over a hundred university and community college professors, as well as career
training program instructors, met together to examine the NGSS expectations to
ensure that they would provide a thorough foundation for entry-level courses in
their fields. Course models are currently being developed to show how the
NGSS standards could specifically lead into advanced study in AP courses.
[Appendix K (NGSS Lead States, 2013, Vol. II, pp.113–136), pending AP course
models.]

Question #15: How and to what extent do the science standards require the application of
knowledge from other content areas as well as enhance learning in these other
areas, including English language arts and mathematics?

CSTA: The learning experiences created from the CSTA K-12 Computer Science
standards should be relevant to the students and should promote their
perceptions of themselves as proactive and empowered problem solvers. They
should be designed with a focus on active learning and exploration and can be
taught within explicit computer science courses or embedded in other curricular
areas such as social science, language arts, mathematics, and science. [CSTA
K-12 Computer Science Standards, 2011. Pg. 8.]

NGSS: The NGSS were designed to align and keep pace with the CCSS-M/ELA, and
the performance expectations are explicitly connected to the specific CCSS
standards (Vol. I, p. xxvi; Vol. II, pp. 50, 137, 158). These connections highlight

11
	

how the performance expectations require mathematic principles to more deeply
understand the core ideas as well as the role of writing, reasoning, and
communication in understanding and applying the core ideas via the practices
(Vol. II, pp. 27–28, 50, 137–138, 158). In addition, these connections also
provide suggestions for where science skills and knowledge could be built
simultaneously with mathematics or ELA skills and knowledge. [Appendix L
(NGSS Lead States, 2013, Vol. II, pp.137–157), Appendix M (NGSS Lead
States, 2013, Vol. II, pp.158–169)]

Preparing Students for College, Career, and Citizenship
Question #16: In what ways do the standards help students develop the technical knowledge

requirements and the collaboration, communication, and problem-solving skills
desired by employers (e.g., in preparation for Career and Technical Education
[CTE] programs or direct employment out of high school)?

CSTA: 4.2.2 Collaboration of the CSTA standards states “Computer science is an
intrinsically collaborative discipline. Significant progress is rarely made in
computer science by one person working alone. Typically, computing projects
involve large teams of computing professionals working together to design,
code, test, debug, describe, and maintain software over time. New programming
methodologies such as pair programming emphasize the importance of working
together. Additionally, development teams working with discipline-specific
experts ensure the computational solutions are appropriate, effective, and
efficient. Developing collaboration skills is thus an important part of these K–12
national computer science standards. In elementary school, students can begin
to work cooperatively with fellow students and teachers using technology. They
learn to gather information and communicate with others using a variety of
traditional and mobile communication devices. They also learn to use online
resources and participate in collaborative problem solving activities. These
collaborative activities continue into middle school, where students apply
multimedia and productivity tools for group learning exercises. In secondary
school, students enhance their collaborative abilities by participating in teams to
solve software problems that are relevant to their daily lives. Skills learned at
this level can include teamwork, constructive criticism, project planning and
management, and team communication, all of which are considered necessary
21st Century skills (see Partnership for 21st Century Skills at p21.org). “ [CSTA
K-12 Computer Science Standards, 2011. Pg 10.]

NGSS: The NGSS integrates science and engineering practices throughout the K–12
standards, and describes explicit connections to the CCSS-M/ELA — thereby
expecting students to develop habits, skills, and knowledge specifically
applicable to many technical fields or preparation program (Vol. II, pp. 11–14,
17–20, 25–30, 138). To be proficient in the NGSS, students will need to
develop the means to communicate effectively and the critical thinking and
problem solving skills necessary for employment in rapidly changing job market.
[Appendix C (NGSS Lead States, 2013, Vol. II, pp.11–24), Appendix D (NGSS
Lead States, 2013, Vol. II, pp.25–39)]

12
	

Question #17: How do the standards reflect the ways in which science and engineering are
currently practiced in society as well as how these disciplines impact society and
address societal needs and concerns?

CSTA: The ethical use of computers and networks is a fundamental aspect of computer
science at all levels and should be seen as an essential element of both learning
and practice. As soon as students begin using the Internet, they should learn the
norms for its ethical use. Principles of personal privacy, network security,
software licenses, and copyrights must be taught at an appropriate level in order
to prepare students to become responsible citizens in the modern world.
Students should be able to make informed and ethical choices among various
types of software such as proprietary and open source and understand the
importance of adhering to the licensing or use agreements. Students should
also be able to evaluate the reliability and accuracy of information they receive
from the Internet. Computers and networks are a multicultural phenomenon that
effect society at all levels. It is essential that K–12 students understand the
impact of computers on international communication. They should learn the
difference between appropriate and inappropriate social networking behaviors.
They should also appreciate the role of adaptive technology in the lives of
people with various disabilities. Computing, like all technologies, has a profound
impact on any culture into which it is placed. The distribution of computing
resources in a global economy raises issues of equity, access, and power.
Social and economic values influence the design and development of computing
innovations. Students should be prepared to evaluate the various positive and
negative impacts of computers on society and to identify the extent to which
issues of access (who has access, who does not, and who makes the decisions
about access) impact our lives. [CSTA K-12 Computer Science Standards,
2011. Pg 11.]

NGSS: By integrating science and engineering practices with core ideas and by
describing connections to the CCSS-M/ELA, the NGSS better reflect the
interconnection of science, engineering, and math in industry (Vol. II, pp. 17–
20, 49–50, 103–104, 138). The inclusion of engineering and science practices
reflects the emphasis on investigation and innovation in technical fields. The
NRC Framework (2012) disciplinary core idea of ETS2: “Links among
engineering, technology, science, and society” is included in the NGSS as an
overarching, cross-disciplinary idea, and the specific components of this idea
are explicitly stated within the foundation boxes where they apply to individual
performance expectations in each of the scientific disciplines and across grade
bands (e.g., HS-ESS1; Vol. I, pp. 120–121). The standards that specifically
address the interrelationship among science, engineering, and human society
help students develop the understanding that technological advances can have
a profound impact on society and the environment (Vol. II, pp. 108–111,
including the “Science, Technology, Society, and the Environment Connections
Matrix”). This highlights the importance of technology in developing scientific
understanding and the importance of science on driving technological
innovation. [Appendix C (NGSS Lead States, 2013, Vol. II, pp.11–24), Appendix
J (NGSS Lead States, 2013, Vol. II, pp.108–112)]

13
	

Question #18: To what extent do the science standards explicitly support underserved student
populations and those populations that traditionally have not succeeded in
science and engineering (e.g., females, minorities, English language learners,
etc.)?

CSTA: Computer science applies to virtually every aspect of life, so that it can be easily
tied to myriad student interests. For example, students who are fascinated with
specific technologies such as cell phones may have an innate passion for visual
design, digital entertainment, or helping society. K–12 computer science
teachers can thus nurture students’ interests, passions, and sense of
engagement with the world around them by offering opportunities for solving
computational problems relevant to their own life experiences. Excellence in
computer science education relies on equitable practices that maximize the
learning potential of all students. Computer science learning opportunities must
be shaped in ways that connect the canon of computer science content provided
in the curricular standards to the lived experiences of diverse students. The
equitable practices in computer science education that connect students with
the curriculum include:
• All students should have access to rigorous and culturally meaningful

computer science and be held to high expectations for interacting with the
curriculum.

• Diverse experiences, beliefs, and ways of knowing computer science should
be acknowledged, incorporated, and celebrated in the classroom.

• The integration of different interpretations, strategies, and solutions that are
computationally sound enhance classroom discussions and deepen
understandings.

• The resources needed for teaching and learning computer science should be
equitably allocated across groups of students, classrooms, and schools.

• Classroom learning communities should foster an environment in which all
students are listened to, respected, and viewed as valuable contributors to
the learning process.

• Ongoing teacher reflection about belief systems, assumptions, and biases
support the development of equitable teaching practices.

 Pedagogically, computer programming has the same relation to studying
computer science as playing an instrument does to studying music or painting
does to studying art. In each case, even a small amount of hands-on experience
adds immensely to life-long appreciation and understanding, even if the student
does not continue programming, playing, or painting as an adult. Although
becoming an expert programmer, violinist, or oil painter demands much time
and talent, we still want to expose every student to the joys of being creative.
The goal for teaching computer science should be to get as many students as
possible enthusiastically engaged with every assignment. We can provide
students with the tools to design and write programs that control their cell
phones or robots, create physics and biology simulations, or compose music.
Students will want to learn to use conditional statements, loops, parameters,
and other fundamental concepts just to make these exciting things happen. In a
fast-paced field such as computer science, we are all challenged to keep up with
our peers and our students. Technology changes rapidly, and students are
sometimes more likely than teachers to be familiar with the latest incarnations.
No teacher should be apprehensive of learning from her or his students. Real
learning involves everyone in the room living with a sense of wonder and

14
	

anticipation. We know that teaching computer science involves some unique
challenges and that none of us has all of the answers. The CSTA Source Web
Repository at http://csta.acm.org/WebRepository/WebRepository.html provides
a comprehensive collection of resources for teachers. These resources have
been found to be helpful in our attempts to better interest, engage, and motivate
our students. Not all of them will be completely applicable to every classroom,
but we believe that many contain useful and varied suggestions that may inspire
both students and teachers alike. [CSTA K-12 Computer Science Standards,
2011. Pg 4-5.]

NGSS: The NGSS describe performance expectations for all students, raising the
expectations for students who might not otherwise take much science in high school. The NGSS
also make connections across the school curricula, including to mathematics and English
Language Arts. In addition, the NGSS practices converge with the math and ELA practices.
These connections are beneficial for students from non-dominant groups who are pressed for
instructional time to develop literacy and numeracy at the cost of other subjects, including
science. The NGSS integrate science and engineering practices in every performance
expectation, providing students an opportunity to demonstrate their understanding in multiple,
diverse ways and providing a justification for multiple, diverse modes of instruction. The NGSS,
by emphasizing engineering, recognizes the contributions of non-dominant cultures and groups
to science and engineering. Engineering also has the potential to be inclusive of students who
have traditionally been marginalized in the science classroom and who do not see science as
being relevant to their lives or future (Vol. II, pp. 27–30). By solving problems through
engineering in local contexts, students view science as relevant to their lives and future, and
engage in science in socially relevant and transformative ways. Engagement in any of the
scientific and engineering practices involves both critical thinking and communication skills (Vol.
II, p. 50). Because the NGSS is required of all students, these skills will help ESL learners to
practice language skills. Finally, the integration of practices with crosscutting concepts require
students to think deeply about material and to make connections among big ideas that cut
across disciplines, which provides opportunities for learning that has not traditionally been
available to disadvantaged or less privileged learners (Vol. II, pp. 80–81). The following case
studies are provided to detail how the NGSS can be used to benefit diverse groups of students:
(1) Economically Disadvantaged, (2) Race and Ethnicity, (3) Students with Disabilities, (4)
English Language Learners, (5) Girls, (6) Alternative Education, (7) Gifted and Talented
Students (www.nextgenscience.org/appendix-d-case-studies). [Appendix D (NGSS Lead States,
2013, Vol. II, pp.25–39); www.nextgenscience.org/appendix-d-case-studies

15
	

16
	

17
	

Augmenting Practices in Science and Engineering with those from
Computational Science

By Irene Lee 5/12/2014

This document is derived from table 3-2 of the “Framework for K-12
Science Education” and includes practices that distinguish Computational
Science from Science and Engineering.

18
	

 Science Computational Science Engineering

1.
 A

sk
in

g
Q

ue
st

io
ns

 a
nd

 D
ef

in
in

g
P

ro
bl

em
s

Science begins with a question
about a phenomenon, such as
“Why is the sky blue?” or
“What causes cancer?” and
seeks to develop theories that
can provide explanatory
answers to such questions. A
basic practice of the scientist
is formulating empirically
answerable questions about
phenomena, establishing what
is already known, and
determining what questions
have yet to be satisfactorily
answered.

Computational Science begins
with a question, such as “How
do birds form flocks?” or a
problem and seeks to develop a
computer model with which to
test theories or design
solutions.
In Computational Science, part
of the question is whether or
not it is suitable for modeling
using computational methods,
and if so, which method?
The practice of creating models
necessarily involves reflection
on the essential mechanisms at
work in the real-world system or
problem domain. When
computer models are
constructed that correspond
reasonably well with real-world
problems, the model can be
used to collect data that
promote understanding of the
real-world problem.
Furthermore, reflection upon
the limitations and inaccuracies
of the model offer opportunities
to consider deep questions
about essential mechanisms at
play in the real-world systems.

Engineering begins with a
problem, need or desire that
suggests an engineering
problem that needs to be
solved. A societal problem
such as reducing the nation’s
dependence on fossil fuels
may engender a variety of
engineering problems, such
as designing more efficient
transportation systems, or
alternative power generation
devices such as improved
solar cells. Engineers ask
questions to define the
engineering problem,
determine criteria for a
successful solution, and
identify constraints.

The distinction between science and engineering may not make sense in the age of
Computational Science.

19
	

 Science Computational Science Engineering

2.
 D

ev
el

op
in

g
an

d
U

si
ng

 M
od

el
s

Science often involves the
construction and use of a wide
variety of models and
simulations to help develop
explanations about natural
phenomena. Models make it
possible to go beyond
observables and imagine a
world not yet seen. Models
enable predictions of the form
“if . . . then . . . therefore” to be
made in order to test
hypothetical explanations.

Computational Science
involves the construction and
use of computer models to
help develop explanations
about the natural and artificial
world. In the simplest cases,
computer models support
prediction. Models of more
complex or interactive systems
offer opportunities to gather
quantitative data which points
to qualitative outcomes.
Models are used as
experimental test beds with
which to run simulations by
changing parameters and
rules. Rather than simply
testing strengths and
limitations of designs (as in
engineering), computer
modeling and simulation can
be used to test theories,
illuminate core dynamics
within a system, discover new
questions, understand the
landscape of outcomes, and
build intuition about complex
systems.

Engineering makes use of
models and simulations to
analyze existing systems so
as to see where flaws might
occur or to test possible
solutions to a new problem.
Engineers also call on
models of various sorts to
test proposed systems and
to recognize the strengths
and limitations of their
designs.

Computer models are used to: [J. Epstein, 2008]1. Explain (very distinct from predict); 2. Guide
data collection; 3. Illuminate core dynamics; 4. Suggest dynamical analogies; 5. Discover new
questions; 6. Promote a scientific habit of mind; 7. Bound (bracket) outcomes to plausible
ranges; 8. Illuminate core uncertainties; 9. Offer crisis options in near-real time; 10. Demonstrate
tradeoffs / suggest efficiencies; 11. Challenge the robustness of prevailing theory through
perturbations; 12. Expose prevailing wisdom as incompatible with available data; 13. Train
practitioners; 14. Discipline the policy dialogue; 15. Educate the general public; and 16. Reveal
the apparently simple to be complex.

20
	

 Science Computational Science Engineering

3.
 P

la
nn

in
g

an
d

C
ar

ry
in

g
O

ut
 In

ve
st

ig
at

io
ns

Scientific investigation may be
conducted in the field or the
laboratory. A major practice of
scientists is planning and
carrying out a systematic
investigation, which requires the
identification of what is to be
recorded and, if applicable, what
are to be treated as the
dependent and independent
variables (control of variables).
Observations and data collected
from such work are used to test
existing theories and
explanations or to revise and
develop new ones.

The investigations that can be
carried out virtually using a
computer model can be
unlike traditional science or
engineering experiments.
Increases in computational
power have enabled
Computational Scientists to
“sweep” the parameter
spaces of all possible
combinations of inputs and
collect outcome data from
each run. Analysis of these
data can reveal “landscapes”
of possible outcomes and
help scientists better
understand the behavior of
the system modeled. Some
models are stochastic in
nature, and multiple runs with
each set of input parameters
can be run quickly and
efficiently. The computer’s
ability to efficiently generate
pseudorandom inputs allows
modelers to effectively
explore these systems as
well.

Engineers use investigation
both to gain data essential
for specifying design criteria
or parameters and to test
their designs. Like
scientists, engineers must
identify relevant variables,
decide how they will be
measured, and collect data
for analysis. Their
investigations help them to
identify how effective,
efficient, and durable their
designs may be under a
range of conditions.

How is experimental design different when using computer models?
1) The space of variables may be larger and multidimensional - sweep space of variables
2) Stochasticity within models requires that multiple runs be performed at each setting to

get a sense of the variability of outcome.
3) The goal of the experimentation may be different. Computational experiments may be

generative - for example, a researcher may investigate if a set of simple rules can
generate a phenomenon seen in nature.

Planning and carrying out scientific investigations using computer models also involves
parameterizing the model by selecting relevant variables and determining experimental design;
planning the data collection and analysis and considering what constitutes “proof” when using
data output from models; simulating and collecting data; and using the computational model as
a test bed for running experiments.

21
	

 Science Computational Science Engineering

4.
 A

na
ly

zi
ng

 a
nd

 In
te

rp
re

tin
g

D
at

a

Scientific investigations produce
data that must be analyzed in
order to derive meaning.
Because data usually do not
speak for themselves, scientists
use a range of tools including
tabulation, graphical
interpretation, visualization, and
statistical analysis—to identify
the significant features and
patterns in the data. Sources of
error are identified and the
degree of certainty calculated.
Modern technology makes the
collection of large data sets
much easier, thus providing
many secondary sources for
analysis.

Computational Science
investigations can produce
large amounts of output data
that, when analyzed, can give
scientists insights into the
nature of systems.
Computational Scientists use
various computational and
mathematical analysis
techniques to identify salient
features and patterns in data.
Once data are produced from
simulations (multiple runs of
the model with different input
parameters), regression and a
variety of machine learning
techniques can be used to
determine the correlations
between inputs and outputs.

Engineers analyze data
collected in the tests of their
designs and investigations;
this allows them to compare
different solutions and
determine how well each one
meets specific design
criteria—that is, which design
best solves the problem
within the given constraints.
Like scientists, engineers
require a range of tools to
identify the major patterns
and interpret the results.

Does science proceed from observation to models and theory that account for data, OR visa
versa?
“On this point, many non-modelers, and indeed many modelers, harbor a naïve inductivism that
might be paraphrased as follows: 'Science proceeds from observation, and then models are
constructed to 'account for' the data.' … This can be very productive, but it is not the rule in
science, where theory often precedes data collection. Maxwell's electromagnetic theory is a prime
example. From his equations the existence of radio waves was deduced. Only then were they
sought…and found! General relativity predicted the deflection of light by gravity, which was only
later confirmed by experiment. Without models, in other words, it is not always clear what data to
collect!” [J. Epstein, 2008]

22
	

 Science Computational Science Engineering

5.
 U

si
ng

 M
at

he
m

at
ic

s
an

d
C

om
pu

ta
tio

na
l T

hi
nk

in
g

In science, mathematics and
computation are fundamental
tools for representing physical
variables and their relationships.
They are used for a range of
tasks, such as constructing
simulations, statistically
analyzing data, and recognizing,
expressing, and applying
quantitative relationships.
Mathematical and computational
approaches enable predictions
of the behavior of physical
systems, along with the testing
of such predictions. Moreover,
statistical techniques are
invaluable for assessing the
significance of patterns or
correlations.

In Computational Science,
computational thinking
(abstraction, automation, and
analysis) is intrinsic to
computer modeling and
simulation. Abstraction is used
to reduce a problem to
essential elements and their
relationships. Abstraction can
result in a general instance
that can represent all other
instances. Automation is used
when designing algorithms to
process information and when
using a computer as a labor
saving device that executes
repetitive tasks quickly and
efficiently. Computer models
use algorithms and automation
as their “engines”. Analysis is
the validation of whether or not
the abstractions made were
appropriate to the questions
being asked. Validation
occurs at the fine-grained level
of the mechanisms
responsible model low-level
interactions as well as at the
highest levels of whether the
results of the model match
observation.

In engineering, mathematical
and computational
representations of
established relationships
and principles are an integral
part of design. For example,
structural engineers create
mathematically-based
analyses of designs to
calculate whether they can
stand up to the expected
stresses of use and if they
can be completed within
acceptable budgets.
Moreover, simulations of
designs provide an effective
test bed for the development
of designs and their
improvement.

Computational thinking describes a set of human thinking skills, habits and approaches that are
integral to solving complex problems using a computer. Computational thinking skills involve
understanding and formulating a problem in such as way that its “solution” can be systematically
and efficiently produced through a set of computational steps or algorithms to be carried out by a
computer. Some, such as Dave Moursand (2009), suggest that the underlying idea in
computational thinking is developing models and simulation of problems that one is trying to study
and solve.

23
	

 Science Computational Science Engineering

6.
 C

on
st

ru
ct

in
g

E
xp

la
na

tio
ns

 a
nd

 D
es

ig
ni

ng
 S

ol
ut

io
ns

The goal of science is the
construction of theories that can
provide explanatory accounts of
features of the world. A theory
becomes accepted when it has
been shown to be superior to
other explanations, in the
breadth of phenomena it
accounts for, and its explanatory
coherence and parsimony.
Scientific explanations are
explicit applications of theory to
a specific situation or
phenomenon, perhaps with the
intermediary of a theory-based
model for the system under
study.
The goal for students is to
construct logically coherent
explanations of phenomena that
incorporate their current
understanding of science, or a
model that represents it, and are
consistent with the available
evidence.

As with Science, the goal of
Computational Science is the
construction of theories that
can provide explanatory
accounts of features of the
world. A theory becomes
accepted when it has been
shown to be superior to other
explanations, in the breadth
of phenomena it accounts for,
and its explanatory
coherence and parsimony.
Scientific explanations are
reinforced when a theory-
based model for the system
under study produces
outcomes similar to those
observed in the real world.
The goal for students is to
construct models of
phenomena that incorporate
their current understanding of
science, use them as
experimental test beds and
determine if running the
model produces outcomes
consistent with the available
evidence.

Engineering design, a
systematic process for
solving engineering problems,
is based on scientific
knowledge and models of the
material world. Each
proposed solution results
from a process of balancing
competing criteria of desired
functions, technological
feasibility, cost, safety,
esthetics, and compliance
with legal requirements.
There is usually no single
best solution but rather a
range of solutions. Which one
is the optimal choice depends
on the criteria used for
making evaluations.

“Many simple models: the Lotka-Volterra ecosystem model, Hooke's Law, or the Kermack-
McKendrick epidemic equations (compartmental models) continue to form the conceptual
foundations of their respective fields. They are universally taught knowing that these models
approximate nature, but nonetheless are useful in developing basic intuitions. This is because
they capture qualitative behaviors of overarching interest, such as predator-prey cycles, or the
nonlinear threshold nature of epidemics and the notion of herd immunity.” [J.Epstein, 2008]

24
	

 Science Computational Science Engineering

8.
 O

bt
ai

ni
ng

, E
va

lu
at

in
g,

 a
nd

 C
om

m
un

ic
at

in
g

In
fo

rm
at

io
n

Science cannot advance if
scientists are unable to
communicate their findings
clearly and persuasively or to
learn about the findings of
others. A major practice of
science is thus the
communication of ideas and
the results of inquiry—orally,
in writing, with the use of
tables, diagrams, graphs, and
equations, and by engaging in
extended discussions with
scientific peers. Science
requires the ability to derive
meaning from scientific texts
(such as papers, the Internet,
symposia, and lectures), to
evaluate the scientific validity
of the information thus
acquired, and to integrate that
information.

Computational Science
combines features of both
science and engineering
practices including obtaining,
evaluating, and
communicating information.
Computer models are
frequently designed on
platforms or written in
computer languages that
offer easy access to
visualization tools and other
interface elements that
promote inter-disciplinary use
of the models. The
visualizations and, in some
cases, the automated and
animated runs of the model,
allow the models to be used
as powerful communication
tools.

Engineers cannot produce
new or improved
technologies if the
advantages of their designs
are not communicated clearly
and persuasively. Engineers
need to be able to express
their ideas, orally and in
writing, with the use of tables,
graphs, drawings, or models
and by engaging in extended
discussions with peers.
Moreover, as with scientists,
they need to be able to derive
meaning from colleagues’
texts, evaluate the
information, and apply it
usefully.
In engineering and science
alike, new technologies are
now routinely available that
extend the possibilities for
communication and
collaboration.

25
	

Notes:

“Computational Science is a field of applied computer science, that is, the application of
computer science to solve problems across a range of disciplines. In the book
Introduction to Computational Science [3], the authors offer the following definition:

“the field of computational science combines computer simulation, scientific
visualization, mathematical modeling, computer programming and data structures,
networking, database design, symbolic computation, and high performance
computing with various disciplines.” Computer science, in contrast, is largely focused
on the theory, design, and implementation of algorithms for manipulating data and
information...The needs of scientists and engineers for computation have long driven
research and innovation in computing. As computers increase in their problem-
solving power, computational science has grown in both breadth and importance. It
is a discipline in its own right [2].

An amazing assortment of sub-fields have arisen under the umbrella of
computational science, including computational biology, computational chemistry,
computational mechanics, computational archeology, computational finance,
computational sociology and computational forensics.

Some fundamental concepts of computational science are germane to every
computer scientist (e.g., modeling and simulation), and computational science topics
are extremely valuable components of an undergraduate program in computer
science. Students who take courses in this area have an opportunity to apply these
techniques in a wide range of application areas, such as molecular and fluid
dynamics, celestial mechanics, economics, biology, geology, medicine, and social
network analysis.

Modeling and simulation of real world systems represent essential knowledge for
computer scientists and provide a foundation for computational sciences. Any
introduction to modeling and simulation would either include or presume an
introduction to computing. In addition, a general set of modeling and simulation
techniques, data visualization methods, and software testing and evaluation
mechanisms are also important.”

Excerpted from “Computer Science Curricula 2013 – Curriculum Guidelines for
Undergraduate Degree Programs in Computer Science”, December 20, 2013. The
Joint Task Force on Computing Curricula; Association of Computing Machinery (ACM)
and IEEE Computer Society. ISBN: 978-1-4503-2309-3 / DOI: 10.1145/2534860 / Web link:
http://dx.doi.org/10.1145/2534860

26
	

Aligning the Framework for K-12 Science Education and CSTA K-12
Standards through the Scientific Practice of Modeling and Simulation

Irene A. Lee

Background
To address the problems of the 21st century that affect us all such as climate change,
loss of biodiversity, energy consumption and virulent disease (Emmott et al, 2006),
students need to understand large, complex systems. Computational Science, at the
intersection of computer science, mathematics and science, is seen as the third leg of
science. In addition to theoretical and experimental/lab/field-based science,
Computational Science is intrinsic to the work of the modern scientist. Increases in
computational power have enabled scientists and researchers across disciplines to
design and conduct experiments on models of systems that are too big, too expensive
or too dangerous to experiment with in the real world. Using a computer model an
experimental test bed, scientists are able to run multiple “What if” scenarios quickly and
collect and analyze large amounts of data utilizing the computational power computers
afford. New fields that explicitly integrate the use of computation include computational
biology, computation physics, computational social science, and computational
chemistry, to name a few.

The spread of diseases (and interventions to prevent them) offers a powerful example
of the critical use of complex models to solve daunting scientific and human problems.
In the August 2009 issue of Nature Josh Epstein states:

As the world braces for an autumn wave of swine flu (H1N1), the relatively
new technique of agent-based computational modeling is playing a central
part in mapping the disease’s possible spread, and designing policies for its
mitigation...Classical epidemic modeling, which began in the 1920s, was built
on differential equations. These models assume that the population is
perfectly mixed, with people moving from the susceptible pool, to the infected
one, to the recovered (or dead) one. Within these pools, everyone is identical,
and no one adapts their behavior. But such models are ill suited to capturing
complex social networks and the direct contacts between individuals, who
adapt their behaviors—perhaps irrationally—based on disease prevalence.
Agent-based models (ABMs) embrace this complexity. ABMs are artificial
societies: every single person (or ‘agent’) is represented as a distinct software
individual.

Computer modeling and simulation are important tools in the computational scientist’s
toolkit. Computer modeling and simulation are used to test theories, illuminate core
dynamics within a system, discover new questions, understand the landscape of
outcomes, and build intuition about complex systems. As explicit representations of
scientists’ abstraction and assumptions, they can serve as artifacts around which to

27
	

focus a dialogue, train practitioners, and educate the general public. But all of these
benefits do not come about without human creativity and ingenuity. Computational
thinking describes a set of human thinking skills, habits and approaches that are integral
to solving complex problems using a computer. Computational thinking skills involve
understanding and formulating a problem in such as way that its “solution” can be
systematically and efficiently produced through a set of computational steps or
algorithms to be carried out by a computer. Some, such as Dave Moursand (2009),
suggest that the underlying idea in computational thinking is developing models and
simulation of problems that one is trying to study and solve.

The three pillars of computational thinking: abstraction, automation, and analysis, are
intrinsic to computer modeling and simulation. Abstraction is the stripping down of a
problem to its bare essentials and capturing common characteristics that can be used to
represent all other instances. A computer model is an abstraction of a real-world
phenomenon or scenario and time is abstracted allowing scientists to run simulated
experiments faster than the analogous experiments in real-life. Automation entails
writing algorithms to process information and using a computer as a labor saving device
that executes repetitive tasks quickly and efficiently. Computer models use algorithms
and iterations as their “engines”. Analysis is the validation of whether or not the
abstractions made were correct. In the context of modeling and simulation one might
ask “Were the right assumptions made when narrowing down the problem to its bare
essentials?” and “Were important factors left out of the model?” Thus, in terms of
modeling and simulation, computational thinking is used on many levels of a model. At
a high level, the “problem” at hand is that of describing/encapsulating a phenomena or
scenario in the form of a model and the “solution” is a resulting model that mimics the
real-world to the required degree (or in required ways) such that it can be used as an
experimental test bed and/or learning tool. At a lower level, computational thinking may
be the development of algorithms that encapsulate the behavior of a component of the
model or system.

The Need
As described in the Computational Thinking in the Next Generation Science Standards
document, “Currently, in most science classrooms, the use of computers is relegated to
simulations or data entry. The opportunities afforded to science through the use of
computer science concepts are immense. Instead of a student simply manipulating
conditions, students who are able to construct their own simulations will display a clear
grasp of the scientific concepts expected in the NGSS. More importantly, this ability
more closely aligns to how scientists do their work today. There are many concepts in
science that are difficult or even impossible to test or manipulate. Students prepared
using this type of [computer science] instruction have a whole world of opportunities
opened to them that will stimulate interest and mastery of material.”

The NGSS are performance standards for students, goals that reflect what students
should know and be able to do. New to the standards is the call for science education to
change in three fundamental ways: 1) science content and practice are to be

28
	

intertwined; 2) scientific practice includes the use, creation, and analysis of computer
models and simulations for STEM inquiry and in the engineering design cycle; and 3)
scientific practice includes computational thinking. In other words, students as science
learners need to act as modern computational scientists. Furthermore, to act as
computational scientists, students must learn, understand, and use computational
thinking, computer science concepts, and computer programming constructs. As users
and evaluators of models, students must be able to look “under the hood” and
understand the mechanisms, abstractions and algorithms implemented in a model using
a computer programming language (as well as evaluate what has been left out of a
model). As creators of their own models, students must understand the computational
science process and use computational thinking and computer science to design,
implement, test and revise their model. As young computational scientists, students
must learn to use models as experimental test-beds and conduct experiments that
sweep multi-dimensional parameter spaces. The data output from these virtual
experiments are subsequently analyzed and interpreted to gain an understanding of the
underlying system or phenomenon. Finally, students must be able to analyze their
creations and determine to what extent their model represents the real world. Often this
entails comparing simulation-generated output and real-world data captured of a similar
phenomenon.

Within the computational science process, students construct theories, design
computational models that embody those theories, and then execute the models with
various inputs (simulation) and gather evidence that support or refute their theories.
Similarly, teachers charged with preparing students as computational scientists must
also learn these concepts and practices in order to teach them.

Approach
To communicate the importance of computer science and illustrate how computer
science concepts can be integrated into the science classroom, we have developed a
crosswalk between middle and high school NGSS Framework and CSTA K-12
Computer Science Standards. The crosswalk between the NGSS Framework and the
CSTA K-12 CS Standards hinges on the aforementioned work of the computational
scientist. Irrespective of whether the computational scientist was first trained as a
computer scientist or as a scientist in a discipline other than computer science, the
“computational scientist” is a computational thinking-enabled STEM professional
[Malyn-Smith and Lee, 2012] who works at the intersection of science, computer
science and mathematics. As defined in the “Profile of a Computational Thinking
Enabled STEM Professional in America’s Workplaces” a computational thinking-
enabled STEM professional uses skills, habits and approaches integral to solving
problems using a computer (e.g. abstraction, automation, and analysis) as he/she
engages in a creative process to solve problems, automate systems, or improve
understanding by defining, modeling, qualifying and refining systems, processes, or
mechanism generally through the use of computers [EDC, 2011]. This professional
may work as a scientist seeking answers or as an engineer solving problems.

29
	

The NGSS framework explicitly references engineering practice at the nexus of
computer science and science and describes the work as “engineers apply science to
design solution to problems and the result is technology”. The description of
“computational science” as the scientific practice at the nexus of computer science and
science, however, is less clear. From a computational science perspective,
computational scientists create and use technology tools (e.g. computer models and
simulation) to look for patterns in seeking to answer questions, the result is scientific
knowledge. In this crosswalk we will focus on this perspective.

The computational science cycle is a progression that was first developed and used in
the Adventures in Supercomputing program, a Sandia National Laboratory funded
educational program that engaged high school students in the practice of computational
science, in 2000-2003. Subsequently it has been used in the Supercomputing
Challenge, Project GUTS: Growing Up Thinking Scientifically, and the New Mexico
Computer Science for All programs with middle and high school students over the past
ten years. The “computational science cycle” was validated as representative of
processes used in computational modeling and simulation by scores of computational
scientists working at the Los Alamos National Laboratory and Sandia National
Laboratories and is aligned with the activities and tasks of the computational thinking
STEM professional [Malyn-Smith and Lee, 2012]. The following diagram illustrates the
cycle.

The computational science cycle was chosen as an intermediary scaffold between the
NGSS and the CSTA Standards because it exemplifies a common trajectory through
the practices within the realm of computational science and because it captures a
subset of the activities and tasks of the computational thinking STEM professional that
is appropriate for middle and high school students to understand. It describes process
of designing, implementing, using and analyzing a computer model. Using the
Computational Science Cycle as a roadmap, computational thinking and computer
programming are contextualized within answering a question and/or solving a real-world
problem using computational modeling and simulation.

Figure 1. The Computational Science Cycle

30
	

31
	

From the perspective of an educator, the stages in the “Computational Science
Process” include:

Stage 1: Selection of a real-world problem or scientific phenomenon to study. We
will discuss what makes a problem or phenomenon suitable for studying using
computational methods. We will discuss the simplifications made in models through
abstraction. We will ask: What real-world issue you are interested in investigating? What
are measurable aspects of the problem? and guide participants in constructing
questions that could be answered through modeling and simulation.

Stage 2: Simplify the scope of the model using abstraction. We will ask: What
aspects of the problem are important to model? and What is happening at different
scales of observation in the complex system? The scope of the problem will be
narrowed to one that can be modeled given the software and computing resources
available. We will diagram the model components and the simulation loop.

Stage 3: From the description and diagram of the model, we will move to the
translation of the idea into a computational model. At this stage we will introduce
fundamental concepts in CS through hands-on activity, and we will develop computer
programs while building simple models prior to building student designed models.

Stage 4: Parameterize the model. We will discuss relevant variables and parameter
and experimental design. We will discuss data collection and analysis and what
constitutes proof when using data output from models.

Stage 5: Simulate and collect data. Use the computational model as a test bed for
running experiments. In some cases this will involve writing another program that runs
the model repeatedly over a set of input values; called a parameter sweep.

Stage 6: Analyze / Interpret. We will review what constitutes proof when using data
output from models. We will discuss the limitations of the computer model, what
assumptions were made, and what the model tell us, if anything, about the real world.
We will mention exploratory uses of models when no theory exists.

Repeat: We will explain that the “Computational Science Process” is an iterative or
repeated process. In evaluating the model one might find verification errors (e.g., bugs
in code) or validation errors (e.g. when comparing model behavior to real world data
there are differences that suggest that the wrong assumptions or simplifications were
made.) In either case, at many points throughout the processes it may be necessary to
loop back to an earlier stage or begin the whole computational cycle anew.

An alignment between the Computational Science Cycle and the CSTA K-12 Computer
Science Standards was constructed by the Santa Fe Institute in 2012 during the
development of the NM-Computer Science for All program. CSTA K-12 Computer
Science Standards state: “The use of modeling and simulation, visualization, and
management of massive data sets has fostered the emergence of a new field that
bridges science, technology, engineering and math—computational science. This field

32
	

integrates many aspects of computer science such as the design of algorithms and
graphics with their application in the sciences.”

Bridging the two standards using the Computational Science cycle contextualizes
computer science within modern scientific practice. Yet, following the stages in the
Computational Science cycle mechanically is not the intent of the cycle diagram. As in
the Framework’s Scientific and Engineering Practices, stages in the Computational
Science cycle may proceed along different paths. The Use-Modify-Create trajectory for
student engagement with models guides students through discrete portions of cycle as
they learn with and about models. In the Use phase, students are given a completed
model. They may run experiments using the computer model as an experimental test
bed by setting different parameters, executing the model, making observations,
collecting data, and trying to infer the rules of the model. It is important to note that
without understanding of the model itself, its underlying assumptions, abstractions, and
mechanisms, the model as a black box cannot be used to make predictions about real-
world phenomena.

When modifying a model, students can look at the rules of the model and change the
rules or add new ones. Because computer models written in computationally-rich
environments enable users to view and manipulate underlying code, students can view
the rules behind them, inspect how the rules were translated into code, uncover the
assumptions of the person who made the model, understand that rules can be changed,
and see how these changes may affect how the model works. Ultimately, when creating
a model, students design the model and determine its rules. They engage in the
iterative design, implement and test process as they refine their model. They may
experience the entire cycle as they run experiments using the computer model as an
experimental test bed by setting different parameters, executing the model, making
observations, collecting data, and finally, analyzing the collected data and determining
to what extent their model reflects the real world.

33
	

In the crosswalk that follows, the mapping the NGSS Scientific and Engineering
Practices to the stages of the computational science cycle is shown in the left hand and
middle columns of Table 1. The mapping of the Computational Science Cycle to the
CSTA K-12 Computer Science Standards is shown in the middle and right hand column
of Table 1.

* Additional learning objectives from the CSTA K-12 Computer Science Standards (such
as responsible use of technology) were not included in this mapping because they were
not explicitly addressed in the Computational Science Cycle. They may be included in
the future.

34
	

NGSS Scientific and
Engineering Practice

Stages of the Computational Science
Cycle:

CSTA K-12 Computer Science
Standard (CT = Computational
Thinking; CPP = Computer
Programming and Practice)

1. Asking questions / Defining
problems. Begin with a question
about a phenomenon and seek
to develop theories that can
provide explanatory answers to
such questions. Formulate
empirically answerable
questions.

1. Select a real-world problem to study.
Discuss what makes a problem suitable for
studying using computational methods.
Discuss the simplifications made in models
through abstraction. We will ask: What real-
world issue you are interested in
investigating? What are measurable
aspects of the problem? and guide
participants in constructing questions that
could be answered through modeling and
simulation.

CT-Modeling and simulation 2-10:
Evaluate the kinds of problems
that can be solved using modeling
and simulation.

CT-Modeling and simulation 1:6-4
Describe how a simulation can be
used to solve a problem.

CT-Modeling and simulation 3A-8
Use modeling and simulation to
represent and understand natural
phenomena.

2. Developing and using models.
Construct and use a wide variety
of models and simulations to help
develop explanations about
natural phenomena. Models
make it possible to go beyond
observables and imagine a world
not yet seen. Models enable
predictions of the form “if…
then… therefore…” to be made in
order to test hypothetical
explanations.

2. Simplify the scope of the model using
abstraction. We will ask: What aspects of
the problem are important to model? and
What is happening at different scales of
observation in the complex system? The
scope of the problem will be narrowed to
one that can be modeled given the
software and computing resources
available. We will diagram the model
components and the simulation loop.

CT-Abstraction 3A-9:
Discuss the value of abstraction to
manage problem complexity.
CT-Abstraction 3B-10:
Decompose a problem by defining
new functions and classes.
CT-Data representation 2-8:
Use visual representation of
problem state, structure and data.
CT-Modeling and simulation 2-9:
Interact with content-specific
models and simulations to support
learning and research.

5. Using mathematics and
computational thinking. In
science, mathematics and
computation are fundamental
tools for representing physical
variables and their relationships.
They are used for a range of
tasks, such as constructing
simulations, statistically analyzing
data, and recognizing,
expressing, and applying
quantitative relationships.
Mathematical and computational
approaches enable predictions of
the behavior of physical systems,
along with the testing of such
predictions.

3. From the description and diagram of the
model, we will move to the translation of
the idea into a computational model.
Computational thinking describes a set of
human thinking skills, habits and
approaches that are integral to solving
complex problems using a computer.
Computational thinking skills involve
understanding and formulating a problem in
such as way that its “solution” can be
systematically and efficiently produced
through a set of computational steps or
algorithms to be carried out by a computer.
The three pillars of computational thinking,
abstraction, automation, and analysis, are
intrinsic to computer modeling and
simulation.

CT-Modeling and simulation 3A-8:
Use modeling and simulation to
represent and understand
phenomena.
CT-Abstraction 2-12:
Use abstraction to decompose a
problem into sub problems.
CT-Data representation 3B-6:
Compare and contrast simple data
structures and their uses.
CT-Data representation 3A-12:
Describe how mathematical and
statistical functions, sets, and logic
are used in computation.
CT-Algorithms 1:6-2:
Develop a simple understanding of
algorithms using computer-free
exercises.

35
	

5. (cont.) Statistical techniques
are invaluable for assessing the
significance of patterns or
correlations.

(Note: computational thinking is
intrinsic to developing computer
models and thus practice #5 sits
within practice #2.)

3. (cont.) Abstraction is the stripping down
of a problem to its bare essentials and
capturing common characteristics that can
be used to represent all other instances. A
computer model is an abstraction of a real-
world phenomenon or scenario and time is
abstracted allowing scientists to run
simulated experiments faster than the
analogous experiments in real-life.
Automation entails writing algorithms to
process information and using a computer
as a labor saving device that executes
repetitive tasks quickly and efficiently.
Computer models use algorithms and
iterations as their “engines”. Analysis is the
validation of whether or not the
abstractions made were correct. In the
context of modeling and simulation one
might ask “Were the right assumptions
made when narrowing down the problem to
its bare essentials?” and “Were important
factors left out of the model?” Thus, in
terms of modeling and simulation,
computational thinking is used on many
levels of a model. At a high level, the
“problem” at hand is that of
describing/encapsulating a phenomena or
scenario in the form of a model and the
“solution” is a resulting model that mimics
the real-world to the required degree (or in
required ways) such that it can be used as
an experimental test bed and/or learning
tool. At a lower level, computational
thinking may be the development of
algorithms that encapsulate the behavior of
a component of the model or system.

CT-Algorithms 2-4:
Evaluate ways that different
algorithms may be used to solve
the same problem.
CT-Algorithms 3A-3:
Explain how sequence, selection,
iteration and recursion are the
building blocks of algorithms.
CPP-Programming 2-5:
Implement a problem solution in a
programming environment using
looping behavior, conditional
statements, logic, expressions,
variables and functions.
CPP-Programming 3A-3:
Use various debugging and testing
methods to ensure program
correctness.
CPP-Programming 3A-4:
Apply analysis, design and
implementation techniques to
solve problems.
CT-Connections to other fields 2-
15: Provide examples of
interdisciplinary applications of
computational thinking.

36
	

3. Planning and carrying out
investigations. Scientific
investigations may be conducted
in the field or laboratory. A major
practice of scientists is planning
and carrying out a systematic
investigation, which requires the
identification of what is to be
recorded and what are to be
treated as the dependent and
independent variables.

4. (Planning investigations) Parameterize
the model. We will discuss relevant
variables and parameter and experimental
design. We will discuss data collection and
analysis and what constitutes proof when
using data output from models.

CT-Modeling and simulation 3B-8:
Use models and simulation to help
formulate, refine, and test
scientific hypotheses.
CPP-Data collection /3A-11:
Describe techniques for locating
and collecting small-and large-
scale data sets.

5. (Carrying out investigations) Simulate
and collect data. Use the computational
model as a test bed for running
experiments. In some cases this will
involve writing another program that runs
the model repeatedly over a set of input
values; called a parameter sweep.

CPP-Data collection and analysis
3B-8: Deploy various data
collection techniques for different
types of problems.

4. Analyzing and interpreting
data. Observations and data
collected from investigations are
used to test existing theories and
explanations or to revise and
develop new explanations.
Scientists use a range of tools to
identify the significant features
and patterns in the data.

6. Analyze / Interpret: We will review what
constitutes proof when using data output
from models. We will discuss the limitations
of the computer model, what assumptions
were made, and what the model tell us, if
anything, about the real world. We will
mention exploratory uses of models when
no theory exists.

We compare outcomes with what is known
about the real world—to see if they “make
sense.

CPP- Data collection and analysis
2-9: Collect and analyze data that
are output from multiple runs of a
computer program.
CT-Modeling and simulation 3B-9:
Analyze data and identify patterns
through modeling and simulation.
CT-Modeling and simulation 2-11:
Analyze the degree to which a
computer model accurately
represents the real world.
CPP- Data collection and analysis
3B-7: Use data analysis to
enhance understanding of
complex natural and human
systems.

6. Constructing explanations
7. Engaging in argument from
evidence
8. Obtaining, evaluating, and
communicating information.

These three practices occur throughout the
Computational Science Cycle, especially
during the comparison of model generated
outcomes with what is known about the
real world. We are engaging in argument
from evidence and constructing
explanations while evaluating and
communicating information. The
“Computational Science Process” is an
iterative or repeated process. In evaluating
the model one might find verification errors
(e.g., bugs in code) or validation errors
(e.g. when comparing model behavior to
real world data there are difference that
suggest that the wrong assumptions or
simplifications were made). In either case,
at many points throughout the processes it
may be necessary to loop back to an
earlier stage or begin the whole
computational cycle anew.

37
	

Aligning the NGSS Disciplinary Core Idea of Engineering, Technology,
and Applications of Science and the CSTA K-12 Computer Science
Standards

Irene A. Lee

Background

Chapter 3 of the Framework for K-12 Science Education describes how student’s
understanding of engineering practices is to develop in the classroom as they use
engineering practices to acquire and apply scientific knowledge. These objectives were
integrated in the NGSS within Crosscutting Concepts (under Connections to
Engineering, Technology and Applications of Science) and as a standalone Disciplinary
Core Idea. The Connections to Engineering, Technology and Applications are linked
back to the DCI of ETS by the themes “Interdependence of Science, Engineering and
Technology” and “Influence of Science, Engineering, and Technology on Society and
the Natural World”. The CSTA K-12 Computer Science Standards are focused on
learning outcomes specific to the discipline of computer science and therefore do not
address “Engineering Practices” per se, They do, however, consider aspects of the
process of designing, developing, and testing algorithms, models and simulations, and
software artifacts.

Another area of commonality between the NGSS Disciplinary Core Idea of Engineering,
Technology, and Applications of Science and the CSTA K-12 Computer Science
Standards appear in the areas of responsible use and impacts of technology. In the
section addressing Community, Global and Ethical Impacts. The CSTA K-12 Computer
Science Standards state “the ethical use of computers and networks is a fundamental
aspect of computer science at all levels and should be seen as an essential element of
both learning and practice.” [CSTA K-12 Computer Science Standards, 2011. Pg 11]
Similarly, the NGSS disciplinary core idea “Links among engineering, technology,
science and society” addresses the interrelationship among science, engineering and
society and states that “students should develop an understanding that technological
advances can have profound impact on society and the environment” (Vol. II, pp.108–
111, including the “Science, Technology, Society, and the Environment Connections
Matrix”).

38
	

NGSS Core Disciplinary Ideas: Engineering,
Technology and Applications of Science.
ETS1: Engineering Design
ETS2: Links among Engineering, Technology,
 Science and Society.

CSTA K-12 CS Standards
 (CPP = Computer Programming and Practice)
 (CCD = Computers and Communication Devices)
 (COL = Collaboration)
 (CGE = Community, Global and Ethical Impacts)

CORE IDEA ETS1: ENGINEERING DESIGN
How do engineers solve problems?

Seen in CSTA Computational Thinking Strand.

ETS1.A. Defining and Delimiting an Engineering Problem
What is a design for? What are the criteria and constraints
of a successful solution?
The engineering design process begins with the
identification of a problem to solve and the specification of
clear goals, or criteria, that the final expected end-user of a
technology or process, address such things as how the
product or system will function (what job it will perform and
how), its durability, and its cost. Criteria should be
quantifiable whenever possible and stated so that one can
tell if a given design meets them. Engineers must contend
with a variety of limitations, or constraints, when they
engage in design. Constraints, which frame the salient
conditions under which the problem must be solved, may
be physical, economic, legal, political, social, ethical,
aesthetic, or related to time and place.
In terms of quantitative measurements, constraints may
include limits on cost, size, weight, or performance, for
example. And although constraints place restrictions on a
design, not all of them are permanent or absolute.

CT-Modeling and simulation 2-10:
Evaluate the kinds of problems that can be solved
using modeling and simulation.

Grade Band Endpoints for ETS1.A
By the end of grade 8. The more precisely a design task’s
criteria and constraints can be defined, the more likely it is
that the designed solution will be successful. Specification
of constraints includes consideration of scientific principles
and other relevant knowledge that are likely to limit possible
solutions (e.g., familiarity with the local climate may rule out
certain plants for the school garden).

 CT-Modeling and simulation 2-10: Evaluate the kinds
of problems that can be solved using modeling and
simulation.

Grade Band Endpoints for ETS1.A
By the end of grade 12. Design criteria and constraints,
which typically reflect the needs of the end-user of a
technology or process, address such things as the
product’s or system’s function (what job it will perform and
how), its durability, and limits on its size and cost. Criteria
and constraints also include satisfying any requirements set
by society, such as taking issues of risk mitigation into
account, and they should be quantified to the extent
possible and stated in such a way that one can tell if a
given design meets them.

 CT-Modeling and simulation 2-10: Evaluate the kinds
of problems that can be solved using modeling and
simulation.

39
	

ETS1.B: Developing Possible Solutions
What is the process for developing potential design
solutions?

Seen in CSTA Strands Computing Practice and
Programming, and Computational Thinking.

Grade Band Endpoints for ETS1.B
By the end of grade 8. A solution needs to be tested, and
then modified on the basis of the test results, in order to
improve it. There are systematic processes for evaluating
solutions with respect to how well they meet the criteria and
constraints of a problem. Sometimes parts of different
solutions can be combined to create a solution that is better
than any of its predecessors. In any case, it is important to
be able to communicate and explain solutions to others.
Models of all kinds are important for testing solutions, and
computers are valuable tools for simulating systems.
Simulations are useful for predicting what would happen if
various parameters of the model were changed, as well as
for making improvements to the model based on peer and
leader (e.g., teacher) feedback.

CT-Abstraction 1:6-5
Make a list of sub-problems to consider while
addressing a larger problem.

CPP-Programming 2-5.
Implement problem solutions using a programming
language including: looping behavior, conditional
statements, logic, expressions, variables, and
functions.

CT-Abstraction 2-12.
Use abstraction to decompose a problem into sub-
problems.

CT-Problem Solving 1:6.
Understand and use the basic steps in algorithmic
problem solving.

CT-Problem Solving 2-1.
Use the basic steps in algorithmic problem solving to
design solutions.

Grade Band Endpoints for ETS1.B
By the end of grade 12. Complicated problems may need
to be broken down into simpler components in order to
develop and test solutions. When evaluating solutions, it is
important to take into account a range of constraints,
including cost, safety, reliability, and aesthetics, and to
consider social, cultural, and environmental impacts.
Testing should lead to improvements in the design through
an iterative procedure. Both physical models and
computers can be used in various ways to aid in the
engineering design process. Physical models, or
prototypes, are helpful in testing product ideas or the
properties of different materials. Computers are useful for a
variety of purposes, such as in representing a design in 3-D
through CAD software; in troubleshooting to identify and
describe a design problem; in running simulations to test
different ways of solving a problem or to see which one is
most efficient or economical; and in making a persuasive
presentation to a client about how a given design will meet
his or her needs.

CT-Abstraction 3B-10.
Decompose a problem by defining new functions and
classes.
CT-Abstraction 3A-9:
Discuss the value of abstraction to manage problem
complexity.
CT-Problem solving 3A-1.
Use predefined functions and parameters, classes,
and methods to divide a complex problem into simpler
parts.
CT-Problem solving 3A-2.
Describe a software development process used to
solve software problems.
CPP-Programming 3A-3.
Use various debugging and testing methods to ensure
program correctness.

CPP-Programming 3A-4.
Apply analysis, design and implementation techniques
to solve problems.

40
	

ETS1.C: Optimizing the Design Solution
How can the various proposed design solutions be
compared and improved?

CSTA Strands Computational Thinking, and
Computing Practice and Programming.

Grade Band Endpoints for ETS1.C
By the end of grade 8. There are systematic processes for
evaluating solutions with respect to how well they meet the
criteria and constraints of a problem. Comparing different
designs could involve running them through the same kinds
of tests and systematically recording the results to
determine which design performs best. Although one
design may not perform the best across all tests, identifying
the characteristics of the design that performed the best in
each test can provide useful information for the redesign
process—that is, some of those characteristics may be
incorporated into the new design. This iterative process of
testing the most promising solutions and modifying what is
proposed on the basis of the test results leads to greater
refinement and ultimately to an optimal solution. Once such
a suitable solution is determined, it is important to describe
that solution, explain how it was developed, and describe
the features that make it successful.

CT-Algorithms 2-4.
Evaluate ways that different algorithms may be used to
solve the same problem.

Grade Band Endpoints for ETS1.C
By the end of grade 12. The aim of engineering is not
simply to find a solution to a problem but to design the best
solution under the given constraints and criteria.
Optimization can be complex, however, for a design
problem with numerous desired qualities or outcomes.
Criteria may need to be broken down into simpler ones that
can be approached systematically, and decisions about the
priority of certain criteria over others (trade-offs) may be
needed. The comparison of multiple designs can be aided
by a trade-off matrix. Sometimes a numerical weighting
system can help evaluate a design against multiple criteria.
When evaluating solutions, all relevant considerations,
including cost, safety, reliability, and aesthetic, social,
cultural, and environmental impacts, should be included.
Testing should lead to design improvements through an
iterative process, and computer simulations are one useful
way of running such tests.

CPP-Programming 3A-3.
Use various debugging and testing methods to ensure
program correctness.
CPP-Programming 3A-4.
Apply analysis, design and implementation techniques
to solve problems.
CT-Algorithms 3A-4.
Compare techniques for analyzing massive data
collections.

CT-Algorithms 3B-4.
Evaluate algorithms by their efficiency, correctness
and clarity.

CT-Data representation 3B-6.
Compare and contrast simple data structures and their
uses.

CT-Problem solving 3A-2.
Describe a software development process used to
solve software problems.

41
	

ETS2.A: Interdependence of Science, Engineering, and
Technology.

Seen in CSTA Strands Computational Thinking and
Community, Global and Ethical Impacts.

Grade Band Endpoints for ETS2.A
By the end of grade 8. Engineering advances have led to
important discoveries in virtually every field of science, and
scientific discoveries have led to the development of entire
industries and engineered systems. In order to design
better technologies, new science may need to be explored
(e.g., materials research prompted by desire for better
batteries or solar cells, biological questions raised by
medical problems). Technologies in turn extend the
measurement, exploration, modeling, and computational
capacity of scientific investigations.

CT-Connections to other fields 1:6-6
Understanding the connections between computer
science and other fields.
CT-Connections to other fields 2-14.
Provide examples of interdisciplinary applications of
computational thinking.

CT-Modeling and Simulation 2-9.
Interact with content-specific models and simulations
to support learning and research.
CT-Modeling and Simulation 2-10.
Evaluate what kinds of problems can be solved using
modeling and simulation.
CT-Modeling and Simulation 2-11.
Analyze the degree to which a computer model
accurately represents the real world.

Grade Band Endpoints for ETS2.A
By the end of grade 12. Science and engineering
complement each other in the cycle known as research and
development (R&D). Many R&D projects may involve
scientists, engineers, and others with wide ranges of
expertise. For example, developing a means for safely and
securely disposing of nuclear waste will require the
participation of engineers with specialties in nuclear
engineering, transportation, construction, and safety; it is
likely to require as well the contributions of scientists and
other professionals from such diverse fields as physics,
geology, economics, psychology, and sociology.

CPP-Programming 2-5.
Implement problem solutions using a programming
language including: looping behavior, conditional
statements, logic, expressions, variables, and
functions.

CPP-Programming 3A-3.
Use various debugging and testing methods to ensure
program correctness.
CPP-Programming 3A-4.
Apply analysis, design and implementation techniques
to solve problems.

CT-Modeling and Simulation 3A-8.
Use modeling and simulation to represent and
understand natural phenomena.

CT-Modeling and Simulation 3B-8.
Use models and simulations to help formulate, refine
and test scientific hypotheses.

CT-Modeling and Simulation 3B-9.
Analyze data and identify patterns through modeling
and simulation.

42
	

ETS2.B: Influence of Engineering, Technology and
Science on Society and the Natural World.

Seen in CSTA Strand Community, Global and
Ethical Impacts.

Grade Band Endpoints for ETS2.B
By the end of grade 8. All human activity draws on natural
resources and has both short- and long-term
consequences, positive as well as negative, for the health
of both people and the natural environment. The uses of
technologies and any limitations on their use are driven by
individual or societal needs, desires, and values; by the
findings of scientific research; and by differences in such
factors as climate, natural resources, and economic
conditions. Thus technology use varies from region to
region and over time. Technologies that are beneficial for a
certain purpose may later be seen to have impacts (e.g.,
health-related, environmental) that were not foreseen. In
such cases, new regulations on use or new technologies (to
mitigate the impacts or eliminate them) may be required.

CGE-Impacts of Technology 1:6-2.
Identify the impacts of technology on personal life and
society.
CGE-Impacts of Technology 2-2.
Demonstrate knowledge of changes in information
technologies over time and the effects those changes
may have on education, the workplace, and society.
CGE-Impacts of Technology 2-3.
Analyze the positive and negative impacts of
computing on human culture.

Grade Band Endpoints for ETS2.B
By the end of grade 12. Modern civilization depends on
major technological systems, including those related to
agriculture, health, water, energy, transportation,
manufacturing, construction, and communications.
Engineers continuously modify these technological systems
by applying scientific knowledge and engineering design
practices to increase benefits while decreasing costs and
risks. Widespread adoption of technological innovations
often depends on market forces or other societal demands,
but it may also be subject to evaluation by scientists and
engineers and to eventual government regulation. New
technologies can have deep impacts on society and the
environment, including some that were not anticipated or
that may build up over time to a level that requires attention
or mitigation. Analysis of costs, environmental impacts, and
risks, as well as of expected benefits, is a critical aspect of
decisions about technology use.

CGE-Impacts of Technology 3A-3.
Discuss the impact of computing technology on
business and commerce.
CGE-Impacts of Technology 3A-3.
Describe the role that adaptive technology can play in
the lives of people with special needs.
CGE-Impacts of Technology 3A-4.
Compare the positive and negative impacts of
computing on culture.
CGE-Impacts of Technology 3B-2.
Analyze the beneficial and harmful effects of
computing innovations.
CGE-Impacts of Technology 3B-3.
Summarize how financial markets, transactions, and
predictions have been transformed by automation.
CGE-Impacts of Technology 3B-4.
Summarize how computation has revolutionized the
way people build real and virtual organizations and
infrastructures.

