LESSON 1: VIDEO GAMES AND COORDINATE PLANES

Common Core Math Standards

- **5.OA.1** - Use parentheses, brackets, or braces in numerical expressions, and evaluate expressions with these symbols.
- **5.OA.2** - Write simple expressions that record calculations with numbers, and interpret numerical expressions without evaluating them. For example, express the calculation “add 8 and 7, then multiply by 2” as $2 \times (8 + 7)$. Recognize that $3 \times (18932 + 921)$ is three times as large as $18932 + 921$, without having to calculate the indicated sum or product.
- **6.NS.5** - Understand that positive and negative numbers are used together to describe quantities having opposite directions or values (e.g., temperature above/below zero, elevation above/below sea level, credits/debits, positive/negative electric charge); use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation.
- **6.NS.8** - Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate.

Common Core Math Practices

- **MP.1** - Make sense of problems and persevere in solving them.
- **MP.2** - Reason abstractly and quantitatively.
- **MP.3** - Construct viable arguments and critique the reasoning of others.
- **MP.4** - Model with mathematics.
- **MP.5** - Use appropriate tools strategically.
- **MP.6** - Attend to precision.
- **MP.7** - Look for and make use of structure.
- **MP.8** - Look for and express regularity in repeated reasoning.

CSTA K-12 Computer Science Standards

- **CT.L1:6-01** - Understand and use the basic steps in algorithmic problem-solving (e.g., problem statement and exploration, examination of sample instances, design, implementation and testing).
- **CT.L2:14** - Examine connections between elements of mathematics and computer science including binary numbers, logic, sets and functions.

LESSON 2: EVALUATION BLOCKS AND ARITHMETIC EXPRESSIONS

Common Core Math Standards

- **5.OA.1** - Use parentheses, brackets, or braces in numerical expressions, and evaluate expressions with these symbols.
- **5.OA.2** - Write simple expressions that record calculations with numbers, and interpret numerical expressions without evaluating them. For example, express the calculation “add 8 and 7, then multiply by 2” as $2 \times (8 + 7)$. Recognize that $3 \times (18932 + 921)$ is three times as large as $18932 + 921$, without having to calculate the indicated sum or product.
- **6.NS.5** - Understand that positive and negative numbers are used together to describe quantities having
opposite directions or values (e.g., temperature above/below zero, elevation above/below sea level, credits/debits, positive/negative electric charge); use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation.

- **6.NS.6** - Understand a rational number as a point on the number line. Extend number line diagrams and coordinate axes familiar from previous grades to represent points on the line and in the plane with negative number coordinates.
- **6.NS.8** - Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate.
- **6.EE.2** - Write, read, and evaluate expressions in which letters stand for numbers.
- **A.SSE.1** - Interpret expressions that represent a quantity in terms of its context.
- **A.SSE.2** - Use the structure of an expression to identify ways to rewrite it. For example, see \(x^4 - y^4 \) as \((x^2)^2 - (y^2)^2\), thus recognizing it as a difference of squares that can be factored as \((x^2 - y^2)(x^2 + y^2)\).
- **A.SSE.4** - Derive the formula for the sum of a finite geometric series (when the common ratio is not 1), and use the formula to solve problems. For example, calculate mortgage payments.★
- **A.REI.1** - Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.

Common Core Math Practices

- **MP.1** - Make sense of problems and persevere in solving them.
- **MP.2** - Reason abstractly and quantitatively.
- **MP.3** - Construct viable arguments and critique the reasoning of others.
- **MP.4** - Model with mathematics.
- **MP.5** - Use appropriate tools strategically.
- **MP.6** - Attend to precision.
- **MP.7** - Look for and make use of structure.
- **MP.8** - Look for and express regularity in repeated reasoning.

LESSON 3: STRINGS AND IMAGES

Common Core Math Standards

- **5.OA.1** - Use parentheses, brackets, or braces in numerical expressions, and evaluate expressions with these symbols.
- **5.OA.2** - Write simple expressions that record calculations with numbers, and interpret numerical expressions without evaluating them. For example, express the calculation “add 8 and 7, then multiply by 2” as \(2 \times (8 + 7) \). Recognize that \(3 \times (18932 + 921) \) is three times as large as \(18932 + 921 \), without having to calculate the indicated sum or product.
- **6.NS.6** - Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate.
- **6.EE.9** - Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation. For example, in a problem involving motion at constant speed, list and graph ordered pairs of distances and times, and write the equation \(d = 65t \) to represent the relationship between distance and time.
- **7.EE.4** - Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.
- **8.F.1** - Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output.
- **8.F.2** - Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change.
A.SSE.1 - Interpret expressions that represent a quantity in terms of its context.
A.SSE.2 - Use the structure of an expression to identify ways to rewrite it. For example, see \(x^4 - y^4 \) as \((x^2)^2 - (y^2)^2\), thus recognizing it as a difference of squares that can be factored as \((x^2 - y^2)(x^2 + y^2)\).
A.SSE.4 - Derive the formula for the sum of a finite geometric series (when the common ratio is not 1), and use the formula to solve problems. For example, calculate mortgage payments.
A.REI.1 - Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.
F.IF.1 - Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If \(f \) is a function and \(x \) is an element of its domain, then \(f(x) \) denotes the output of \(f \) corresponding to the input \(x \). The graph of \(f \) is the graph of the equation \(y = f(x) \).

Common Core Math Practices
- MP.1 - Make sense of problems and persevere in solving them.
- MP.2 - Reason abstractly and quantitatively.
- MP.3 - Construct viable arguments and critique the reasoning of others.
- MP.4 - Model with mathematics.
- MP.5 - Use appropriate tools strategically.
- MP.6 - Attend to precision.
- MP.7 - Look for and make use of structure.
- MP.8 - Look for and express regularity in repeated reasoning.

LESSON 4: CONTRACTS, DOMAIN, AND RANGE

Common Core Math Standards
- 5.OA.1 - Use parentheses, brackets, or braces in numerical expressions, and evaluate expressions with these symbols.
- 5.OA.2 - Write simple expressions that record calculations with numbers, and interpret numerical expressions without evaluating them. For example, express the calculation “add 8 and 7, then multiply by 2” as \(2 \times (8 + 7) \). Recognize that \(3 \times (18932 + 921) \) is three times as large as \(18932 + 921 \), without having to calculate the indicated sum or product.
- 6.NS.8 - Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate.
- 6.EE.9 - Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation. For example, in a problem involving motion at constant speed, list and graph ordered pairs of distances and times, and write the equation \(d = 65t \) to represent the relationship between distance and time.
- 7.EE.4 - Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.
- 8.F.1 - Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output.1
- 8.F.2 - Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change.
- A.SSE.1 - Interpret expressions that represent a quantity in terms of its context.
- A.SSE.2 - Use the structure of an expression to identify ways to rewrite it. For example, see \(x^4 - y^4 \) as \((x^2)^2 - (y^2)^2\), thus recognizing it as a difference of squares that can be factored as \((x^2 - y^2)(x^2 + y^2)\).
- F.IF.1 - Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If \(f \) is a function and \(x \) is an element of its domain, then \(f(x) \) denotes the output of \(f \) corresponding to the input \(x \). The graph of \(f \) is the graph of the equation y = f(x).
\[y = f(x). \]

- **F.IF.2** - Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.
- **F.IF.3** - Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by \(f(0) = f(1) = 1, f(n+1) = f(n) + f(n-1) \) for \(n \geq 1 \).

Common Core Math Practices
- **MP.1** - Make sense of problems and persevere in solving them.
- **MP.2** - Reason abstractly and quantitatively.
- **MP.3** - Construct viable arguments and critique the reasoning of others.
- **MP.4** - Model with mathematics.
- **MP.5** - Use appropriate tools strategically.
- **MP.6** - Attend to precision.
- **MP.7** - Look for and make use of structure.
- **MP.8** - Look for and express regularity in repeated reasoning.

LESSON 5: WRITING CONTRACTS

Common Core Math Standards
- **5.OA.1** - Use parentheses, brackets, or braces in numerical expressions, and evaluate expressions with these symbols.
- **5.OA.2** - Write simple expressions that record calculations with numbers, and interpret numerical expressions without evaluating them. For example, express the calculation “add 8 and 7, then multiply by 2” as \(2 \times (8 + 7) \). Recognize that \(3 \times (18932 + 921) \) is three times as large as \(18932 + 921 \), without having to calculate the indicated sum or product.
- **6.NS.8** - Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate.
- **6.EE.9** - Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation. For example, in a problem involving motion at constant speed, list and graph ordered pairs of distances and times, and write the equation \(d = 65t \) to represent the relationship between distance and time.
- **7.EE.4** - Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.
- **8.F.1** - Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output.1
- **8.G.1** - Verify experimentally the properties of rotations, reflections, and translations:
 - **A.SSE.1** - Interpret expressions that represent a quantity in terms of its context.
 - **A.SSE.2** - Use the structure of an expression to identify ways to rewrite it. For example, see \(x^4 - y^4 \) as \((x^2)^2 - (y^2)^2 \), thus recognizing it as a difference of squares that can be factored as \((x^2 - y^2)(x^2 + y^2) \).
 - **F.IF.1** - Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If \(f \) is a function and \(x \) is an element of its domain, then \(f(x) \) denotes the output of \(f \) corresponding to the input \(x \). The graph of \(f \) is the graph of the equation \(y = f(x) \).
 - **F.IF.2** - Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.
 - **F.IF.3** - Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by \(f(0) = f(1) = 1, f(n+1) = f(n) + f(n-1) \) for \(n \geq 1 \).

Common Core Math Practices
- **MP.1** - Make sense of problems and persevere in solving them.
LESSON 6: DEFINING VARIABLES AND SUBSTITUTION

Common Core Math Standards

- **5.OA.1** - Use parentheses, brackets, or braces in numerical expressions, and evaluate expressions with these symbols.
- **5.OA.2** - Write simple expressions that record calculations with numbers, and interpret numerical expressions without evaluating them. For example, express the calculation “add 8 and 7, then multiply by 2” as $2 \times (8 + 7)$. Recognize that $3 \times (18932 + 921)$ is three times as large as $18932 + 921$, without having to calculate the indicated sum or product.
- **6.EE.4** - Identify when two expressions are equivalent (i.e., when the two expressions name the same number regardless of which value is substituted into them). For example, the expressions $y + y + y$ and $3y$ are equivalent because they name the same number regardless of which number y stands for.
- **A.SSE.1** - Interpret expressions that represent a quantity in terms of its context.
- **A.SSE.2** - Use the structure of an expression to identify ways to rewrite it. For example, see $x^4 - y^4$ as $(x^2)^2 - (y^2)^2$, thus recognizing it as a difference of squares that can be factored as $(x^2 - y^2)(x^2 + y^2)$.
- **A.CED.1** - Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.
- **A.CED.2** - Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.
- **F.IF.1** - Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x. The graph of f is the graph of the equation $y = f(x)$.
- **F.IF.2** - Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.
- **F.IF.3** - Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by $f(0) = f(1) = 1$, $f(n+1) = f(n) + f(n-1)$ for $n \geq 1$.
- **F.LE.1** - Distinguish between situations that can be modeled with linear functions and with exponential functions.

Common Core Math Practices

- **MP.1** - Make sense of problems and persevere in solving them.
- **MP.2** - Reason abstractly and quantitatively.
- **MP.3** - Construct viable arguments and critique the reasoning of others.
- **MP.4** - Model with mathematics.
- **MP.5** - Use appropriate tools strategically.
- **MP.6** - Attend to precision.
- **MP.7** - Look for and make use of structure.
- **MP.8** - Look for and express regularity in repeated reasoning.

LESSON 7: THE BIG GAME - VARIABLES

Common Core Math Standards

- **5.OA.1** - Use parentheses, brackets, or braces in numerical expressions, and evaluate expressions with these symbols.
5.OA.2 - Write simple expressions that record calculations with numbers, and interpret numerical expressions without evaluating them. For example, express the calculation "add 8 and 7, then multiply by 2" as \(2 \times (8 + 7) \). Recognize that \(3 \times (18932 + 921) \) is three times as large as 18932 + 921, without having to calculate the indicated sum or product.

6.EE.4 - Identify when two expressions are equivalent (i.e., when the two expressions name the same number regardless of which value is substituted into them). For example, the expressions \(y + y + y \) and \(3y \) are equivalent because they name the same number regardless of which number \(y \) stands for.

A.SSE.1 - Interpret expressions that represent a quantity in terms of its context.

A.SSE.2 - Use the structure of an expression to identify ways to rewrite it. For example, see \(x^4 - y^4 \) as \((x^2)^2 - (y^2)^2 \), thus recognizing it as a difference of squares that can be factored as \((x^2 - y^2)(x^2 + y^2) \).

A.CED.1 - Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.

A.CED.2 - Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.

F.IF.1 - Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If \(f \) is a function and \(x \) is an element of its domain, then \(f(x) \) denotes the output of \(f \) corresponding to the input \(x \). The graph of \(f \) is the graph of the equation \(y = f(x) \).

F.IF.2 - Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.

F.IF.3 - Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by \(f(0) = f(1) = 1, f(n+1) = f(n) + f(n-1) \) for \(n \geq 1 \).

F.LE.1 - Distinguish between situations that can be modeled with linear functions and with exponential functions.

Common Core Math Practices
- MP.1 - Make sense of problems and persevere in solving them.
- MP.2 - Reason abstractly and quantitatively.
- MP.3 - Construct viable arguments and critique the reasoning of others.
- MP.4 - Model with mathematics.
- MP.5 - Use appropriate tools strategically.
- MP.6 - Attend to precision.
- MP.7 - Look for and make use of structure.
- MP.8 - Look for and express regularity in repeated reasoning.

LESSON 8: COMPOSITE FUNCTIONS

Common Core Math Standards
- 5.OA.1 - Use parentheses, brackets, or braces in numerical expressions, and evaluate expressions with these symbols.
- 5.OA.2 - Write simple expressions that record calculations with numbers, and interpret numerical expressions without evaluating them. For example, express the calculation "add 8 and 7, then multiply by 2" as \(2 \times (8 + 7) \). Recognize that \(3 \times (18932 + 921) \) is three times as large as 18932 + 921, without having to calculate the indicated sum or product.
- 7.G.1 - Solve problems involving scale drawings of geometric figures, including computing actual lengths and areas from a scale drawing and reproducing a scale drawing at a different scale.
- 8.F.1 - Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output.
- 8.F.2 - Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change.
- A.SSE.1 - Interpret expressions that represent a quantity in terms of its context.
- A.SSE.2 - Use the structure of an expression to identify ways to rewrite it. For example, see \(x^4 - y^4 \) as \((x^2)^2 - (y^2)^2 \).
(y2)2, thus recognizing it as a difference of squares that can be factored as \((x2 - y2)(x2 + y2)\).

- **A.CED.1** - Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.
- **A.CED.2** - Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.
- **F.IF.1** - Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If \(f\) is a function and \(x\) is an element of its domain, then \(f(x)\) denotes the output of \(f\) corresponding to the input \(x\). The graph of \(f\) is the graph of the equation \(y = f(x)\).
- **F.IF.2** - Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.
- **F.IF.3** - Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by \(f(0) = f(1) = 1, f(n+1) = f(n) + f(n-1)\) for \(n \geq 1\).
- **F.IF.4** - For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.★
- **F.IF.5** - Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function \(h(n)\) gives the number of person-hours it takes to assemble \(n\) engines in a factory, then the positive integers would be an appropriate domain for the function.★
- **F.IF.6** - Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.★
- **F.LE.1** - Distinguish between situations that can be modeled with linear functions and with exponential functions.

Common Core Math Practices

- **MP.1** - Make sense of problems and persevere in solving them.
- **MP.2** - Reason abstractly and quantitatively.
- **MP.3** - Construct viable arguments and critique the reasoning of others.
- **MP.4** - Model with mathematics.
- **MP.5** - Use appropriate tools strategically.
- **MP.6** - Attend to precision.
- **MP.7** - Look for and make use of structure.
- **MP.8** - Look for and express regularity in repeated reasoning.

LESSON 9: THE DESIGN RECIPE

Common Core Math Standards

- **5.OA.1** - Use parentheses, brackets, or braces in numerical expressions, and evaluate expressions with these symbols.
- **5.OA.2** - Write simple expressions that record calculations with numbers, and interpret numerical expressions without evaluating them. For example, express the calculation “add 8 and 7, then multiply by 2” as \(2 \times (8 + 7)\). Recognize that \(3 \times (18932 + 921)\) is three times as large as \(18932 + 921\), without having to calculate the indicated sum or product.
- **6.NS.8** - Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate.
- **6.EE.9** - Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation. For example, in a problem involving motion at constant speed, list and graph ordered pairs of distances and times, and write the equation \(d = 65t\) to represent the relationship between distance and time.
- **7.EE.4** - Use variables to represent quantities in a real-world or mathematical problem, and construct simple
equations and inequalities to solve problems by reasoning about the quantities.

- **8.F.1** - Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output.

- **8.F.2** - Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change.

- **A.CED.1** - Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.

- **A.CED.2** - Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.

- **A.CED.3** - Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non-viable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods.

- **A.CED.4** - Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm’s law \(V = IR \) to highlight resistance \(R \).

- **F.IF.1** - Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If \(f \) is a function and \(x \) is an element of its domain, then \(f(x) \) denotes the output of \(f \) corresponding to the input \(x \). The graph of \(f \) is the graph of the equation \(y = f(x) \).

- **F.IF.2** - Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.

- **F.IF.3** - Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by \(f(0) = f(1) = 1 \), \(f(n+1) = f(n) + f(n-1) \) for \(n \geq 1 \).

- **F.IF.4** - For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.★

- **F.IF.5** - Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function \(h(n) \) gives the number of person-hours it takes to assemble \(n \) engines in a factory, then the positive integers would be an appropriate domain for the function.★

- **F.IF.6** - Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.★

- **F.IF.7** - Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.★

- **F.IF.9** - Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.

- **F.BF.1** - Write a function that describes a relationship between two quantities.

- **F.BF.2** - Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms.★

- **F.LE.1** - Distinguish between situations that can be modeled with linear functions and with exponential functions.

- **F.LE.2** - Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).

Common Core Math Practices

- **MP.1** - Make sense of problems and persevere in solving them.

- **MP.2** - Reason abstractly and quantitatively.

- **MP.3** - Construct viable arguments and critique the reasoning of others.

- **MP.4** - Model with mathematics.

- **MP.5** - Use appropriate tools strategically.

- **MP.6** - Attend to precision.

- **MP.7** - Look for and make use of structure.

- **MP.8** - Look for and express regularity in repeated reasoning.
LESSON 10: ROCKET HEIGHT

Common Core Math Standards

- **5.OA.1** - Use parentheses, brackets, or braces in numerical expressions, and evaluate expressions with these symbols.
- **5.OA.2** - Write simple expressions that record calculations with numbers, and interpret numerical expressions without evaluating them. For example, express the calculation “add 8 and 7, then multiply by 2” as 2 × (8 + 7). Recognize that 3 × (18932 + 921) is three times as large as 18932 + 921, without having to calculate the indicated sum or product.
- **6.NS.8** - Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate.
- **6.EE.9** - Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation. For example, in a problem involving motion at constant speed, list and graph ordered pairs of distances and times, and write the equation d = 65t to represent the relationship between distance and time.
- **7.EE.4** - Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.
- **8.F.1** - Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output.
- **8.F.2** - Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change.
- **A.CED.1** - Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.
- **A.CED.2** - Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.
- **A.CED.3** - Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non-viable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods.
- **A.CED.4** - Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm’s law V = IR to highlight resistance R.
- **F.IF.1** - Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then f(x) denotes the output of f corresponding to the input x. The graph of f is the graph of the equation y = f(x).
- **F.IF.2** - Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.
- **F.IF.3** - Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by f(0) = f(1) = 1, f(n+1) = f(n) + f(n-1) for n ≥ 1.
- **F.IF.4** - For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.
- **F.IF.5** - Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function h(n) gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.
- **F.IF.6** - Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.
- **F.IF.7** - Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.
• F.IF.9 - Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.

• F.BF.1 - Write a function that describes a relationship between two quantities.

• F.BF.2 - Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms.★

• F.LE.1 - Distinguish between situations that can be modeled with linear functions and with exponential functions.

• F.LE.2 - Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).

Common Core Math Practices

• MP.1 - Make sense of problems and persevere in solving them.

• MP.2 - Reason abstractly and quantitatively.

• MP.3 - Construct viable arguments and critique the reasoning of others.

• MP.4 - Model with mathematics.

• MP.5 - Use appropriate tools strategically.

• MP.6 - Attend to precision.

• MP.7 - Look for and make use of structure.

• MP.8 - Look for and express regularity in repeated reasoning.

LESSON 11: SOLVING WORD PROBLEMS WITH THE DESIGN RECIPE

Common Core Math Standards

• 5.OA.1 - Use parentheses, brackets, or braces in numerical expressions, and evaluate expressions with these symbols.

• 5.OA.2 - Write simple expressions that record calculations with numbers, and interpret numerical expressions without evaluating them. For example, express the calculation "add 8 and 7, then multiply by 2" as 2 \times (8 + 7). Recognize that 3 \times (18932 + 921) is three times as large as 18932 + 921, without having to calculate the indicated sum or product.

• 6.NS.8 - Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate.

• 6.EE.9 - Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.

• 8.F.1 - Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output.1

• 8.F.2 - Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change.

• A.CED.1 - Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.

• A.CED.2 - Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.

• A.CED.3 - Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non-viable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods.

• A.CED.4 - Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving
equations. For example, rearrange Ohm’s law \(V = IR \) to highlight resistance \(R \).

- **F.IF.1** - Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If \(f \) is a function and \(x \) is an element of its domain, then \(f(x) \) denotes the output of \(f \) corresponding to the input \(x \). The graph of \(f \) is the graph of the equation \(y = f(x) \).

- **F.IF.2** - Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.

- **F.IF.3** - Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by \(f(0) = f(1) = 1, f(n+1) = f(n) + f(n-1) \) for \(n \geq 1 \).

- **F.IF.4** - For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.★

- **F.IF.5** - Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function \(h(n) \) gives the number of person-hours it takes to assemble \(n \) engines in a factory, then the positive integers would be an appropriate domain for the function.★

- **F.IF.6** - Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.★

- **F.IF.7** - Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.★

- **F.IF.9** - Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.

- **F.BF.1** - Write a function that describes a relationship between two quantities.

- **F.BF.2** - Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms.★

- **F.LE.1** - Distinguish between situations that can be modeled with linear functions and with exponential functions.

- **F.LE.2** - Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).

Common Core Math Practices

- **MP.1** - Make sense of problems and persevere in solving them.
- **MP.2** - Reason abstractly and quantitatively.
- **MP.3** - Construct viable arguments and critique the reasoning of others.
- **MP.4** - Model with mathematics.
- **MP.5** - Use appropriate tools strategically.
- **MP.6** - Attend to precision.
- **MP.7** - Look for and make use of structure.
- **MP.8** - Look for and express regularity in repeated reasoning.

LESSON 12: THE BIG GAME - ANIMATION

Common Core Math Standards

- **5.OA.1** - Use parentheses, brackets, or braces in numerical expressions, and evaluate expressions with these symbols.
- **5.OA.2** - Write simple expressions that record calculations with numbers, and interpret numerical expressions without evaluating them. For example, express the calculation “add 8 and 7, then multiply by 2” as \(2 \times (8 + 7) \). Recognize that \(3 \times (18932 + 921) \) is three times as large as \(18932 + 921 \), without having to calculate the indicated sum or product.
- **6.NS.8** - Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate.
- **6.EE.9** - Use variables to represent two quantities in a real-world problem that change in relationship to one
another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation. For example, in a problem involving motion at constant speed, list and graph ordered pairs of distances and times, and write the equation
\[d = 65t \] to represent the relationship between distance and time.

- **7.EE.4** - Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.
- **8.F.1** - Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output.
- **8.F.2** - Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change.
- **F.IF.1** - Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If \(f \) is a function and \(x \) is an element of its domain, then \(f(x) \) denotes the output of \(f \) corresponding to the input \(x \). The graph of \(f \) is the graph of the equation \(y = f(x) \).
- **F.IF.2** - Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.
- **F.IF.4** - For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.
- **F.IF.5** - Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function \(h(n) \) gives the number of person-hours it takes to assemble \(n \) engines in a factory, then the positive integers would be an appropriate domain for the function.
- **F.IF.6** - Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.
- **F.BF.1** - Write a function that describes a relationship between two quantities.
- **F.BF.2** - Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms.
- **F.LE.1** - Distinguish between situations that can be modeled with linear functions and with exponential functions.
- **F.LE.2** - Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).

Common Core Math Practices
- **MP.1** - Make sense of problems and persevere in solving them.
- **MP.2** - Reason abstractly and quantitatively.
- **MP.3** - Construct viable arguments and critique the reasoning of others.
- **MP.4** - Model with mathematics.
- **MP.5** - Use appropriate tools strategically.
- **MP.6** - Attend to precision.
- **MP.7** - Look for and make use of structure.
- **MP.8** - Look for and express regularity in repeated reasoning.

LESSON 13: BOOLEANS AND LOGIC

Common Core Math Standards
- **5.OA.1** - Use parentheses, brackets, or braces in numerical expressions, and evaluate expressions with these symbols.
- **5.OA.2** - Write simple expressions that record calculations with numbers, and interpret numerical expressions without evaluating them. For example, express the calculation “add 8 and 7, then multiply by 2” as \(2 \times (8 + 7) \). Recognize that \(3 \times (18932 + 921) \) is three times as large as \(18932 + 921 \), without having to calculate the indicated sum or product.
6.NS.8 - Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate.

6.EE.9 - Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation. For example, in a problem involving motion at constant speed, list and graph ordered pairs of distances and times, and write the equation \(d = 65t \) to represent the relationship between distance and time.

7.EE.4 - Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.

8.F.1 - Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output.

8.F.2 - Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change.

A.REI.3 - Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.

A.REI.10 - Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).

Common Core Math Practices
- MP.1 - Make sense of problems and persevere in solving them.
- MP.2 - Reason abstractly and quantitatively.
- MP.3 - Construct viable arguments and critique the reasoning of others.
- MP.4 - Model with mathematics.
- MP.5 - Use appropriate tools strategically.
- MP.6 - Attend to precision.
- MP.7 - Look for and make use of structure.
- MP.8 - Look for and express regularity in repeated reasoning.

LESSON 14: BOOLEAN OPERATORS

Common Core Math Standards
- 5.OA.1 - Use parentheses, brackets, or braces in numerical expressions, and evaluate expressions with these symbols.
- 5.OA.2 - Write simple expressions that record calculations with numbers, and interpret numerical expressions without evaluating them. For example, express the calculation “add 8 and 7, then multiply by 2” as \(2 \times (8 + 7) \). Recognize that \(3 \times (18932 + 921) \) is three times as large as \(18932 + 921 \), without having to calculate the indicated sum or product.
- 6.NS.8 - Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate.
- 6.EE.9 - Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation. For example, in a problem involving motion at constant speed, list and graph ordered pairs of distances and times, and write the equation \(d = 65t \) to represent the relationship between distance and time.
- 7.EE.4 - Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.
- 8.F.1 - Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output.
- 8.F.2 - Compare properties of two functions each represented in a different way (algebraically, graphically,
Common Core Math Practices

- **MP.1** - Make sense of problems and persevere in solving them.
- **MP.2** - Reason abstractly and quantitatively.
- **MP.3** - Construct viable arguments and critique the reasoning of others.
- **MP.4** - Model with mathematics.
- **MP.5** - Use appropriate tools strategically.
- **MP.6** - Attend to precision.
- **MP.7** - Look for and make use of structure.
- **MP.8** - Look for and express regularity in repeated reasoning.

LESSON 15: SAM THE BAT

Common Core Math Standards

- **5.OA.1** - Use parentheses, brackets, or braces in numerical expressions, and evaluate expressions with these symbols.
- **5.OA.2** - Write simple expressions that record calculations with numbers, and interpret numerical expressions without evaluating them. For example, express the calculation “add 8 and 7, then multiply by 2” as 2 × (8 + 7). Recognize that 3 × (18932 + 921) is three times as large as 18932 + 921, without having to calculate the indicated sum or product.
- **6.NS.8** - Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate.
- **6.EE.9** - Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation. For example, in a problem involving motion at constant speed, list and graph ordered pairs of distances and times, and write the equation d = 65t to represent the relationship between distance and time.
- **7.EE.4** - Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.
- **8.F.1** - Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output.
- **8.F.2** - Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change.

Common Core Math Practices

- **MP.1** - Make sense of problems and persevere in solving them.
- **MP.2** - Reason abstractly and quantitatively.
- **MP.3** - Construct viable arguments and critique the reasoning of others.
- **MP.4** - Model with mathematics.
- **MP.5** - Use appropriate tools strategically.
- **MP.6** - Attend to precision.
- **MP.7** - Look for and make use of structure.
- **MP.8** - Look for and express regularity in repeated reasoning.

LESSON 16: THE BIG GAME - BOOLEANs

Common Core Math Standards
5.OA.1 - Use parentheses, brackets, or braces in numerical expressions, and evaluate expressions with these symbols.

5.OA.2 - Write simple expressions that record calculations with numbers, and interpret numerical expressions without evaluating them. For example, express the calculation “add 8 and 7, then multiply by 2” as $2 \times (8 + 7)$. Recognize that $3 \times (18932 + 921)$ is three times as large as $18932 + 921$, without having to calculate the indicated sum or product.

6.NS.8 - Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate.

6.EE.9 - Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation. For example, in a problem involving motion at constant speed, list and graph ordered pairs of distances and times, and write the equation $d = 65t$ to represent the relationship between distance and time.

7.EE.4 - Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.

8.F.1 - Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output.

8.F.2 - Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change.

Common Core Math Practices

- MP.1 - Make sense of problems and persevere in solving them.
- MP.2 - Reason abstractly and quantitatively.
- MP.3 - Construct viable arguments and critique the reasoning of others.
- MP.4 - Model with mathematics.
- MP.5 - Use appropriate tools strategically.
- MP.6 - Attend to precision.
- MP.7 - Look for and make use of structure.
- MP.8 - Look for and express regularity in repeated reasoning.

LESSON 17: CONDITIONALS AND PIECEWISE FUNCTIONS

Common Core Math Standards

- 5.OA.1 - Use parentheses, brackets, or braces in numerical expressions, and evaluate expressions with these symbols.
- 5.OA.2 - Write simple expressions that record calculations with numbers, and interpret numerical expressions without evaluating them. For example, express the calculation “add 8 and 7, then multiply by 2” as $2 \times (8 + 7)$. Recognize that $3 \times (18932 + 921)$ is three times as large as $18932 + 921$, without having to calculate the indicated sum or product.
- 6.NS.8 - Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate.
- 6.EE.9 - Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation. For example, in a problem involving motion at constant speed, list and graph ordered pairs of distances and times, and write the equation $d = 65t$ to represent the relationship between distance and time.
- 7.EE.4 - Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.
- 8.F.1 - Understand that a function is a rule that assigns to each input exactly one output. The graph of a function
is the set of ordered pairs consisting of an input and the corresponding output.1

- **8.F.2** - Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change.
- **F.IF.7.b** - Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions.

Common Core Math Practices

- **MP.1** - Make sense of problems and persevere in solving them.
- **MP.2** - Reason abstractly and quantitatively.
- **MP.3** - Construct viable arguments and critique the reasoning of others.
- **MP.4** - Model with mathematics.
- **MP.5** - Use appropriate tools strategically.
- **MP.6** - Attend to precision.
- **MP.7** - Look for and make use of structure.
- **MP.8** - Look for and express regularity in repeated reasoning.

LESSON 18: CONDITIONALS AND UPDATE PLAYER

Common Core Math Standards

- **5.OA.1** - Use parentheses, brackets, or braces in numerical expressions, and evaluate expressions with these symbols.
- **5.OA.2** - Write simple expressions that record calculations with numbers, and interpret numerical expressions without evaluating them. For example, express the calculation “add 8 and 7, then multiply by 2” as \(2 \times (8 + 7)\). Recognize that \(3 \times (18932 + 921)\) is three times as large as \(18932 + 921\), without having to calculate the indicated sum or product.
- **6.NS.8** - Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate.
- **6.EE.9** - Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation. For example, in a problem involving motion at constant speed, list and graph ordered pairs of distances and times, and write the equation \(d = 65t\) to represent the relationship between distance and time.
- **7.EE.4** - Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.
- **8.F.1** - Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output.1
- **8.F.2** - Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change.

Common Core Math Practices

- **MP.1** - Make sense of problems and persevere in solving them.
- **MP.2** - Reason abstractly and quantitatively.
- **MP.3** - Construct viable arguments and critique the reasoning of others.
- **MP.4** - Model with mathematics.
- **MP.5** - Use appropriate tools strategically.
- **MP.6** - Attend to precision.
- **MP.7** - Look for and make use of structure.
- **MP.8** - Look for and express regularity in repeated reasoning.
LESSON 19: COLLISION DETECTION AND THE PYTHAGOREAN THEOREM

Common Core Math Standards

- **6.NS.8** - Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate.
- **7.EE.4** - Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.
- **8.EE.2** - Use square root and cube root symbols to represent solutions to equations of the form \(x^2 = p\) and \(x^3 = p\), where \(p\) is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that \(\sqrt{2}\) is irrational.
- **8.F.1** - Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output.
- **8.F.2** - Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change.
- **8.G.7** - Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions.
- **8.G.8** - Apply the Pythagorean Theorem to find the distance between two points in a coordinate system.

Common Core Math Practices

- **MP.1** - Make sense of problems and persevere in solving them.
- **MP.2** - Reason abstractly and quantitatively.
- **MP.3** - Construct viable arguments and critique the reasoning of others.
- **MP.4** - Model with mathematics.
- **MP.5** - Use appropriate tools strategically.
- **MP.6** - Attend to precision.
- **MP.7** - Look for and make use of structure.
- **MP.8** - Look for and express regularity in repeated reasoning.

LESSON 20: THE BIG GAME - COLLISION DETECTION

Common Core Math Standards

- **6.NS.8** - Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate.
- **7.EE.4** - Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.
- **8.EE.2** - Use square root and cube root symbols to represent solutions to equations of the form \(x^2 = p\) and \(x^3 = p\), where \(p\) is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that \(\sqrt{2}\) is irrational.
- **8.F.1** - Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output.
- **8.F.2** - Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change.
- **8.G.7** - Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions.
- **8.G.8** - Apply the Pythagorean Theorem to find the distance between two points in a coordinate system.

Common Core Math Practices

- **MP.1** - Make sense of problems and persevere in solving them.
• MP.2 - Reason abstractly and quantitatively.
• MP.3 - Construct viable arguments and critique the reasoning of others.
• MP.4 - Model with mathematics.
• MP.5 - Use appropriate tools strategically.
• MP.6 - Attend to precision.
• MP.7 - Look for and make use of structure.
• MP.8 - Look for and express regularity in repeated reasoning.