Support K-12 Computer Science Education in Minnesota

Computer science drives job growth and innovation throughout our economy and society. Computing occupations are the number 1 source of all new wages in the U.S. and make up over half of all projected new jobs in STEM fields, making Computer Science one of the most in-demand college degrees. And computing is used all around us and in virtually every field. It’s foundational knowledge that all students need. But computer science is marginalized throughout education. Only 35% of U.S. high schools teach any computer science courses and only 10% of STEM graduates study it. We need to improve access for all students, including groups who have traditionally been underrepresented.

Support K-12 Computer Science Education in Minnesota

Computer science in Minnesota

- Minnesota currently has 10,942 open computing jobs (2.3 times the average demand rate in Minnesota).
- The average salary for a computing occupation in MN is $91,925, which is significantly higher than the average salary in the state ($52,730). The existing open jobs alone represent a $1,005,840,833 opportunity in terms of annual salaries.
- Minnesota had only 1,236 computer science graduates in 2017; only 17% were female.
- Only 1,480 exams were taken in AP Computer Science by high school students in Minnesota in 2018 (879 took AP CS A and 601 took AP CSP).
- Only 21% were female (19% for AP CS A and 22% for AP CSP); only 79 exams were taken by Hispanic or Latino students (34 took AP CS A and 45 took AP CSP); only 44 exams were taken by Black students (26 took AP CS A and 18 took AP CSP); only 1 exam was taken by American Indian or Alaska Native students (0 took AP CS A and 1 took AP CSP); only 4 exams were taken by Native Hawaiian or Pacific Islander students (2 took AP CS A and 2 took AP CSP).
- Only 65 schools in MN (20% of MN schools with AP programs) offered an AP Computer Science course in 2017-2018 (16% offered AP CS A and 10% offered AP CSP), which is 6 more than the previous year.
- Universities in Minnesota did not graduate a single new teacher prepared to teach computer science in 2016.
- According to a representative survey from Google/Gallup, school administrators in MN support expanding...
What can you do to support K-12 CS education in Minnesota?

1. Nominate a teacher for a professional learning scholarship: www.code.org/nominate
2. Send a letter:
 - To your school/district asking them to expand computer science offerings at every grade level: www.code.org/promote/letter
 - To your elected officials asking them to support computer science education policy in Minnesota: www.votervoice.net/Code/campaigns/58463/respond
3. Find out if your school teaches computer science or submit information about your school's offerings at www.code.org/yourschool.
4. Visit www.code.org/educate/3rdparty to find out about courses and curriculum from a variety of providers, including Code.org.
5. Visit www.code.org/promote/MN to learn more about supporting computer science in your state.

Code.org's impact in Minnesota

- In Minnesota, Code.org's curriculum is used in
 - 20% of elementary schools
 - 10% of middle schools
 - 7% of high schools
- There are 8,434 teacher accounts and 417,467 student accounts on Code.org in Minnesota.
- Of students in Minnesota using Code.org curriculum last school year,
 - 24% attend high needs schools
 - 39% are in rural schools
 - 48% are female students
 - 32% are underrepresented minority students (Black/African American, Hispanic/Latino, American Indian, or Hawaiian)
- Code.org, its regional partner(s) Twin Cities Public Television, and 7 facilitators have provided professional learning in Minnesota for
 - 1,259 teachers in CS Fundamentals (K-5)
 - 30 teachers in Exploring Computer Science or Computer Science Discoveries
 - 27 teachers in Computer Science Principles

“Computer Science is a liberal art: it’s something that everybody should be exposed to and everyone should have a mastery of to some extent.”

— Steve Jobs
What can your state do to improve computer science education?

States and local school districts need to adopt a broad policy framework to provide all students with access to computer science. The following nine recommendations are a menu of best practices that states can choose from to support and expand computer science. Not all states will be in a position to adopt all of the policies. Read more about these 9 policy ideas at https://code.org/files/Making_CS_Fundamental.pdf and see our rubric for describing state policies at http://bit.ly/9policiesrubric.

- Minnesota **has not** yet created a state plan for K-12 computer science. A plan that articulates the goals for computer science, strategies for accomplishing the goals, and timelines for carrying out the strategies is important for making computer science a fundamental part of a state’s education system.

- Minnesota **does not yet** have rigorous computer science standards publicly available across K-12. Computer science has often been confused with broader technology education in schools. The state could strengthen its computer science programs by publicly adopting discrete standards for computer science focused on both the creation and use of software and computing technologies at all levels of K-12 education. These standards can be guided by the concepts, practices, and recommendations in the K-12 Computer Science Framework, found at http://www.k12cs.org.

- Minnesota **does not yet** provide dedicated funding for rigorous computer science professional development and course support. Although funds may be available via broader programs, the state can strengthen its computer science programs by creating specific opportunities to bring computer science to school districts, such as matching fund programs.

- Minnesota **does not yet** have clear certification pathways for computer science teachers. The expansion of K-12 computer science education is hampered by the lack of qualified computer science teachers. We can grow their ranks by creating clear, navigable, and rewarding professional paths for computer science teachers.

- Minnesota **has not yet** established programs at institutions of higher education to offer computer science to preservice teachers. The computer science teacher shortage can be addressed by exposing more preservice teachers to computer science during their required coursework or by creating specific pathways for computer science teachers.

- Minnesota **does not yet** have dedicated computer science positions in state or local education agencies. Creating a statewide computer science leadership position within the state education agency can help expand state-level implementation of computer science education initiatives. Similar positions at the local level could support districts’ expansion of course offerings and professional development.

- Minnesota **does not yet** require that all secondary schools offer computer science. The state can support the expansion of computer science courses by adopting policies that require schools to offer a computer science course based on rigorous standards, with appropriate implementation timelines and allowing for remote and/or in-person courses.

- Minnesota **does not yet** allow computer science to count as a core admission requirement at institutions of higher education. Admission policies that do not include rigorous computer science courses as meeting a core entrance requirement, such as in mathematics or science, discourage students from taking such courses in secondary education. State leaders can work with institutions of higher education to ensure credit and articulation policies align with secondary school graduation requirements.
Follow us!

Join our efforts to give every student in every school the opportunity to learn computer science. Learn more at code.org, or follow us on Facebook and Twitter.

Launched in 2013, Code.org® is a nonprofit dedicated to expanding access to computer science, and increasing participation by women and underrepresented students of color. Our vision is that every student in every school should have the opportunity to learn computer science.

Data is from the Conference Board for job demand, the Bureau of Labor Statistics for state salary and national job projections data, the College Board for AP exam data, the National Center for Education Statistics for university graduate data, the Gallup and Google research study Education Trends in the State of Computer Science in U.S. K-12 Schools for parent demand, the 2018 Computer Science Access Report for schools that offer computer science, and Code.org for its own courses, professional learning programs, and participation data.