Computer Science Principles

CS Principles: Decoded

a curriculum from Code.org

Description

Computer Science Principles (CSP) is a course designed around the AP_Computer Science
Principles Framework. It becomes an official AP® course in the 2016-17 school year.

Code.org’s CS Principles course is designed to be a full-year, rigorous, but entry-level course
for high school students. The curriculum is also written to support teachers new to the

discipline with inquiry-based activities, videos, assessment support, and computing tools that
have built-in tutorials and student pacing guides.

Below is a snapshot of the course. The course contains 4 core units of study, roughly equal in
length, each containing about 20 lessons. Most lessons take one or two days to complete in
class, assuming a typical 50-minute period. [expand image]

Linit | - Digital Information

Overview:

This unit explores the technical
challenges ard questions that arise
from the need to represent digital
information in computers and
transfer it between people and
computational devices. Topics include:
the digial representation of
information - mumbers, texs, images,
and communication protoocls.

Lessons:

I.Impact of Innovation

1 Sending Binary messages

J.Maore complex messages

4. Bit Sending Widget

5. Sending Bits in the Real World

& Mumber Systems

T_Birary numbers

L Sending numbers

9. Encoding Mumbers in the Real
Warld

10. Ercoding and Sending Tex:

Il Serding formazed Text

12. Bytes and File Sizes

13. Texz Compression

14, Encoding BE&YY images

15, Enceding Color images

1&.Project - Personal Favicon

Practice PT:Encode a
womplex piece of information

Unit 2 - The Internet Uit 3 - Programming

Cverview:

Students continue to wark together
to irwvent solutions and protocols to
marty of the problems that arise in
the: structure and function of the
Internet. Topics include the Internet
Protocol, NS, TCF/IR cryptography
and other security and hacking
concerns.

Lessons:

|. Addressing Messages

2. Addressing for Computers

3. Mame-to-address mapping

4. Finding your friends

5. IP Addresses, URLs, ard DNE

7. Packes Switched Metworlks

8. Problemns with packess

9. Redundancy and Routing

100 ¥Who can see my data?

1 1. Routing, Scaling, The internez

12 Securing aur bits

|4 intro to encryption

15 Computaticnally hard problems

& “Hard" security

|7 Public Key Cryptography

1% Security and Hacking in the real
world

20, Intro to Applab

2. Putting information on the web

Practice PT: Internet and
Privacy |ssues

Owervliew: Students learn the
fundamentals programming
constructs of avascript by solving
problems with "turtde graphics™ and
then simple event-driven apos. An
emphasis is placed on enabling
students to solve problems and write
code in teams.
Lessons:
I Salving Big Problems with C5
1. The MNeed for Programming

1]
1. Quick Tour of Pencil Code
4. Programming with Primitives
3. Function Juncdaon
& Function Challenge
¥. Parameterized Functions
E. Project: Design Your Own Font
S_Application Programming Interface
10. Team Dlesign
I'l.Team Programming
12 ¥ariables
I3.¥ariable Arithmetic
14, Mumeric input
15, Inzeractive Apps with Variables
6. Corditiorals {to be re-written)
I7. f Statements {to be re-written)
18, Mested If-statements
19.¥hile Locps ito be written)
10. Project: Quiz-App
11.What does the Internes krow
about you?

Practice PT: Yriting about
Cade

Unit 4 - Data

Overview: Students contirue
programming and building web apps,
o with 2 view towards dat:
processing it with algorithms, 2nd the
imglications of storing data collected
rom and by others on the web.
fGtudents explore “big dam" by making
iqueries against 2 data analysis api.

Lessons:

Mote: currendy under development

I. Udlity of Random rumbers

A ooin flipping experiment

Construct your own EXperiment

PFroject: Run your experiment

Processing Lists and what “Big

Cam" means

& Process a small st

7. Manipulate items in a list

[B. Imwestigate image data

5. Simple image filvers

10. Project:: Make your cwn image
filtmr

1 1. 5zoring user datm in 2 dambase

| 2. Retrieving data from your database

13. The risks of s2oring personal dan

4. Project: Make an app that uses
data from a database

| 5. Experiments with big data

6. Programming against an api
iwalfram)

| 7. Extracting lnowledge from dam

=

into projects]

Uit 5 - Explore and Create

Overview:

This wnit is primarity dedicazed time
fior students to prepare and finish
their performance task projects. A
ferwr instructional days will allow the
teacher to prepare the students
before “letting them go™ to work on
their projects.

Lessons:
= Prepare for Create FT
- Do CREATE

- Prepare for Explore PT
- Da Explare

30 days 30 days 40 days 30 days 10-15 days
=0 weaks ~G WaEKs ~B weeks 0 weaks ~2-3 woeks
Sept 1% Py Oct 121 PY Mo (1% e Dec ¢« PY Jan 0% PY Feb 119 PY Mar 15 Py Apr 4 .

L

Each unit concludes with a practice performance task (PT) that mimics the assessment style
of the tasks students are required to complete on their own for submission to the College
Board as part of the official assessment for the course.

AP is a trademark registered and/or owned by the College Board, which was not involved in the production of, and
does not endorse, this document.

http://secure-media.collegeboard.org/digitalServices/pdf/ap/ap-computer-science-principles-curriculum-framework.pdf
http://secure-media.collegeboard.org/digitalServices/pdf/ap/ap-computer-science-principles-curriculum-framework.pdf
http://code.org/files/CSPCurriculumMap2015.png

Computer Science Principles

Unit 5 is devoted almost entirely to time for students to work on and finish their PT projects for
submission to the College Board. A timeline showing a typical Sept-May school year is shown
at the bottom. The AP Exam and PT submission deadline will typically be in the first week of
May.

Who should take this course

There are no formal prerequisites for this course, though the College Board recommends that
students have taken at least Algebra 1. The course also contains a significant amount of
expository writing (as well as writing computer code, of course). For students wishing to
complete the requirements of the AP Exam and Performance Tasks, we recommend they be
in 10th grade or above.

Who should teach this course

The curriculum is designed so that a teacher who is new to teaching this material has
adequate support and preparation - especially for those who go through our professional
development program. A teacher who is motivated to teach a course like this and who has
even limited technical or formal computer science experience should be able to teach the
course. We do strongly recommend that the teacher have a decent level of comfort using
computers (using the web, email, downloading and saving files, basic troubleshooting, etc.)
and at least some experience with computer programming obtained through self-instruction,
an online course, or a course taken in college.

Technical Requirements

The course requires a 1:1 computer lab or setup such that each student in the class has ad
hoc access to an internet-connected computer every day in class. Each computer must have
a modern web browser installed. All of the course tools and resources (lesson plans, teacher
dashboard, videos, student tools, programming environment, etc.) are online and accessed
through a web browser. While the course features many “unplugged” activities away from the
computer, and group work both away and at the the computer, ad hoc access to a computer
is essential for every student. It is not required that students have access to computers at
home, though obviously that greatly enables learning to continue outside the walls of the
classroom.

Resources
The Code.org CSP curriculum includes almost all resources teachers need to teach the
course including:
e Instructional guides for every lesson
Formative and summative assessments, exemplars, rubrics, and teacher dashboard
Student videos - including tutorials, instructional and inspirational videos
Teacher videos - including lesson supports, and pedagogical tips and hints
Widgets and simulators for exploring individual computing concepts

AppLab - Code.org’s javascript programming environment for making apps

Computer Science Principles

Curriculum Overview

The Internet and innovation provides a narrative arc for the course, a thread connecting all of
the units. The course starts with learning about what is involved in sending a single bit of
information from one place to another, and ends with students developing small applications
of their own design that live on the web.

Unit Structure

While the layout of units appears to be modular, the units of study are intended to be taught in
the order suggested, and each not only builds students’ skills and knowledge through the
course, but lessons in units frequently refer back to lessons from previous units.

Each unit typically ends with a practice Performance Task (PT) in which students do work
similar to the College Board PTs. These practice PTs are smaller in scope than the real PTs
and are intended to focus on particular elements or skills required to complete the PTs at the
end of the course.

Lesson Structure and Philosophy

Lessons are designed to be student-centered and to engage students with inquiry-based and
concept-discovery activities. The course does not require the new-to-computing teacher to
lecture or present on computer science topics if they do not want to. Direct instruction is built
into our tools and videos. The teacher plays a large role making choices and ensuring that the
activities, inquiry, and reflection are engaging and appropropriate for their students, as well as
assessing student learning.

Most lessons follow a basic routine:
e A warm-up activity to activate prior knowledge and present a thought-provoking
problem
e An activity that varies but is typically one of:
o Unplugged concept invention, and problem solving scenarios
o Creating digital artifacts (including programming)
o Research / reflection / presentation
e Activities are also frequently done in pairs or small groups
e A wrap-up activity or reflection

Computer Science Principles

Coverage of the CS Principles Framework

The CS Principles framework is not intended to be taught in any particular order. The “Learning Objectives”
(LOs) are typically associated with 10 or more “Essential Knowledge” (EK) statements, and are themselves
grouped under 7 Big Ideas. Each LO and its associated EKs typically overlap, intersect, or are closely
related to other LOs and Eks. For example, the LOs about programming also refer to abstraction.

Below is a table showing which units contain “coverage” of a learning objective. We define “coverage”
mean that some number of EKs associated with an LO are addressed in the course either explicitly or
implicitly through practice or performance. (For example, the LOs under Creativity are about student action
or behavior more than facts about computing that need to be learned.)

CS Principles Framework
Learning Objectives
Creativity
1.1.1 Apply a creative development process when creating computational artifacts. [P2]
1.2.1 Create a computational artifact for creative expression. [P2]
1.2.2 Create a computational artifact using computing tools and technigues to solve a problem. [P2]
- 1.2.3 Create a new computational artifact by combining or modifying existing artifacts. [P2]
1.2.4 Collaborate in the creation of computational artifacts. [P6]
1.2.5 Analyze the correctness, usability, functionality, and suitability of computational artifacts. [P4]
1.3.1 Use computing tools and techniques for creative expression. [P2]
Abstraction
2.1.1 Describe the variety of abstractions used to represent data. [P3]
2.1.2 Explain how binary sequences are used to represent digital data. [P5]
2.2.1 Develop an abstraction when writing a program or creating other computational artifacts. [P2]
2.2.2 Use multiple levels of abstraction to write programs. [P3]
2.2.3 Identify multiple levels of abstractions that are used when writing programs. [P3]
2.3.1 Use models and simulations to represent phenomena. [P3]
2.3.2 Use models and simulations to formulate, refine, and test hypotheses. [P3]

Units

s s » N

3.1.1 Use computers to process information, find patterns, and test hypotheses about digitally processed information to gain insight and knowledge. [P4]
3.1.2 Collaborate when processing information to gain insight and knowledge. [P6]

3.1.3 Explain the insight and knowledge gained from digitally processed data by using appropriate visualizations, notations, and precise language. [P5]
3.2.1 Extract information from data to discover and explain connections, patterns, or trends. [P1]

3.3.1 Analyze how data representation, storage, security, and transmission of data involve computational manipulation of information. [P4]

-- Algorithms

L 4.1.1 Develop an algorithm for implementation in a program. [P2]

LN 4.1.2 Express an algorithm in a language. [P5]

4.2.1 Explain the difference between algorithms that run in a reasonable time and those that do not run in a reasonable time. [P1]
4.2.2 Explain the difference between solvable and unsolvable problems in computer science. [P1]

4.2.3 Explain the existence of undecidable problems in computer science. [P1]

4.2.4 Evaluate algorithms analytically and empirically for efficiency, correctness, and clarity. [P4]

-- Programming

5.1.1 Develop a program for creative expression, to satisfy personal curiosity, or to create new knowledge. [P2]
5.1.2 Develop a correct program to solve problems. [P2]

5.1.3 Collaborate to develop a program. [P6]

5.2.1 Explain how programs implement algorithms. [P3]

5.3.1 Use abstraction to manage complexity in programs. [P3]

5.4.1 Evaluate the correctness of a program. [P4]

5.5.1 Employ appropriate mathematical and logical concepts in programming. [P1]

Internet

6.1.1 Explain the abstractions in the Internet and how the Internet functions. [P3]

6.2.1 Explain characteristics of the Internet and the systems built on it. [P5]

6.2.2 Explain how the characteristics of the Internet influence the systems built on it. [P4]

6.3.1 Identify existing cybersecurity concerns and potential options to address these issues with the Internet and the systems built on it. [P1]
Global Impacts

7.1.1 Explain how computing innovations affect communication, interaction, and cognition. [P4]

7.1.2 Explain how people participate in a problem solving process that scales. [P4]

7.2.1 Explain how computing has impacted innovations in other fields. [P1]

7.3.1 Analyze the beneficial and harmful effects of computing. [P4]

7.4.1 Explain the connections between computing and economic, social, and cultural contexts. [P1]

http://secure-media.collegeboard.org/digitalServices/pdf/ap/ap-computer-science-principles-curriculum-framework.pdf

Computer Science Principles

Unit Overviews

What follows are more in-depth descriptions of each unit of study which explain the topics
covered and what students will be doing.

Unit 1: The Digital Representation of Information

This unit sets the foundations for thinking about the digital (binary) representation of
information and how that affects the world we live in. This unit explores the technical
challenges and questions that arise from the need to represent digital information in
computers and transfer it between people and computational devices. Topics include: the
digital representation of information - numbers, text, images, and communication protocols.

The unit begins with a consideration of what is involved in sending a single bit of information
from one place to another. In the Sending Bits lab students work with a partner to devise and
build their own bit-sending “machines.” Complexity increases as students adapt their
machines to handle multi-bit messages, and increasingly complex information. As the unit
progresses, students learn more about the binary representation of information, and are
asked to think more abstractly about how to encode complex information in bits.

The unit concludes with a practice Performance Task in which students invent their own file
type/protocol for encoding a complex type of information that has some personal significance
to them. A draft of the lessons and prototypes of tools for Unit 1 are available here:
http://code.org/educate/csp/uniti

Lessons CSP Framework Learning Objectives Addressed
(addressed explicitly or implicitly through practice)
1. Impact of Innovation Creativity
2. Sending Binary messages 1.1.1 Apply a creative development process when creating computational artifacts.
3. More complex messages 1.2.1 Create a computational artifact for creative expression. [P2]
. . . 1.2.2 Create a computational artifact using computing tools and techniques to solve
4. Bit Sending Widget a problem. [P2]
5. Sending Bits in the Real World 1.2.3 Create a new computational artifact by combining or modifying existing artifacts. [P2]
6. Number Systems 1.2.4 Collaborate in the creation of computational artifacts. [P6]
7. Binary numbers 1|.$.f5 ?na[lng the correctness, usability, functionality, and suitability of computational
; artifacts.
8. Send"?g numbers . 1.3.1 Use computing tools and techniques for creative expression. [P2]
9. Encoding Numbers in the Real Abstraction
World 2.1.1 Describe the variety of abstractions used to represent data. [P3]
10. Encoding and Sending Text 2.1.2 Explain how binary sequences are used to represent digital data. [P5]
11. Sending formatted Text 2.2.1 Develop an abstraction when writing a program or creating other computational

artifacts. [P2]

Data

3.1.1 Use computers to process information, find patterns, and test hypotheses about
digitally processed information to gain insight and knowledge. [P4]

12. Bytes and File Sizes
13. Text Compression
14. Encoding B&W images

15. Encoding Color image_s Global Impacts

16.Project - Personal Favicon 7.1.1 Explain how computing innovations affect communication, interaction, and cognition.
[P4]

17. Practice Performance Task: 7.2.1 Explain how computing has impacted innovations in other fields. [P1]

. 7.4.1 Explain the connections between computing and economic, social, and cultural
Encode a Complex Thing P puting

http://code.org/educate/csp/unit1

Computer Science Principles

contexts. [P1]

Unit 2: The Internet

In this unit students extend their understanding of the internet and how it functions by building
off the concepts they learned when sending bits in Unit 1. The unit largely explores the
structure and design of the internet and the implications of those design decisions including
the reliability of network communication, the security of data, and personal privacy. Topics
include the Internet Protocol (IP), DNS, TCP/IP, cryptography and other security and hacking

concerns.

The unit starts with students being presented with a more robust Internet Simulator that
students will use to solve some of the classic problems of network communication such as
addressing devices, redundancy, latency and throughput. Students work together to invent
solutions and protocols to many of the problems that arise. The second half of the unit asks
students to consider how information might be encrypted to ensure privacy and some of the
tradeoffs involved. Finally, some problems in encryption are used as a way to talk about
computationally hard problems.

Lessons CSP Framework Learning Objectives Addressed
(addressed explicitly or implicitly through practice)
1. Addressing Messages Creativity
2. Addressing for Computers 1.2.1 Create a computational artifact for creative expression. [P2]
. 1.2.2 Create a computational artifact using computing tools and techniques to solve a problem.

3. Name-to-address mapping P2]
4. Finding your friends 1.2.4 Collaborate in the creation of computational artifacts. [P6]
5. IP Addresses, URLs, and DNS 1.2.5 Analyze the.correctness, usabllllty, functlonallt.y, and SU|tqb|I|ty of computational artifacts. [P4]

] 1.3.1 Use computing tools and techniques for creative expression. [P2]
7. Packet Switched Networks Abstraction
8. Problems with packets 2.1.1 Describe the variety of abstractions used to represent data. [P3]

9. Redundancy and Routing
10. Who can see my data?

11. Routing, Scaling, The internet
12. Securing our bits

14. Intro to encryption

15. Computationally hard
problems

16. “Hard” security

17 Public Key Cryptography
19. Security and Hacking in the
real world

20. Intro to AppLab

21. Putting information on the

2.1.2 Explain how binary sequences are used to represent digital data. [P5]

2.3.1 Use models and simulations to represent phenomena. [P3]

Data

3.1.1 Use computers to process information, find patterns, and test hypotheses about digitally
processed information to gain insight and knowledge. [P4]

3.1.2 Collaborate when processing information to gain insight and knowledge. [P6]

3.3.1 Analyze how data representation, storage, security, and transmission of data involve
computational manipulation of information. [P4]

Algorithms

4.1.2 Express an algorithm in a language. [P5]

4.2.1 Explain the difference between algorithms that run in a reasonable time and those that do not
run in a reasonable time. [P1]

4.2.2 Explain the difference between solvable and unsolvable problems in computer science. [P1]
4.2.3 Explain the existence of undecidable problems in computer science. [P1]

4.2.4 Evaluate algorithms analytically and empirically for efficiency, correctness, and clarity. [P4]
Programming

5.2.1 Explain how programs implement algorithms. [P3]

Computer Science Principles

Practice Performance Task:
The Internet and your privacy 6.2.2 Explain how the characteristics of the Internet influence the systems built on it. [P4]

web 5.4.1 Evaluate the correctness of a program. [P4]

6.1.1 Explain the abstractions in the Internet and how the Internet functions. [P3]
Internet
6.2.1 Explain characteristics of the Internet and the systems built on it. [P5]

6.3.1 Identify existing cybersecurity concerns and potential options to address these issues with
the Internet and the systems built on it. [P1]

Global Impacts

7.1.1 Explain how computing innovations affect communication, interaction, and cognition. [P4]
7.2.1 Explain how computing has impacted innovations in other fields. [P1]

7.3.1 Analyze the beneficial and harmful effects of computing. [P4]

7.4.1 Explain the connections between computing and economic, social, and cultural contexts. [P1]

Unit 3: Programming

This unit introduces students to programming in the javascript language and creating small
applications (apps) that live on the web. This introduction places a heavy emphasis on
understanding the principles of computer programming and revealing those things that are
universal to all computing and any programming language. Students will program in a new
environment created by Code.org called App Lab that has many features, chief among them
the ability to write javascript programs with click-and-drag blocks or just typing text - allowing
the user to switch back and forth at will. This should greatly ease the transition to typing
text-based programming languages.

The unit begins with students solving problems with classic turtle-style programming, focusing
on the power of procedural abstraction and personal expression with code. After learning
some basics of programming with the turtle, we gradually blend in elements more commonly
seen in apps, like buttons and text inputs, images and so on, teaching programming from an
event-driven perspective. The unit concludes with students creating a small app of their own
to share with friends and family.

Lessons CSP Framework Learning Objectives Addressed

(addressed explicitly or implicitly through practice)

1. Solving Big Problems with Creativity
CS 1.1.1 Apply a creative development process when creating computational artifacts. [P2]
2. The Need for Programming 1.2.1 Create a computational artifact for creative expression. [P2]

1.2.2 Create a computational artifact using computing tools and techniques to solve a problem. [P2]

Languages 1.2.4 Collaborate in the creation of computational artifacts. [P6]

3. A Quick Tour of AppLab 1.2.5 Analyze the correctness, usability, functionality, and suitability of computational artifacts. [P4]

4. Programming with Primitives | 1.3.1 Use computing tools and techniques for creative expression. [P2]

5. Function Junction Abstraction

6. Function Challenge 2.2.1 Develop an abstraction when writing a program or creating other computational artifacts. [P2]
. . 2.2.2 Use multiple levels of abstraction to write programs. [P3]

7. Par?metenz_ed Functions 2.2.3 Identify multiple levels of abstractions that are used when writing programs. [P3]

8. Project: Design Your Own Data

Font 3.1.1 Use computers to process information, find patterns, and test hypotheses about digitally

9. Application Programming processed information to gain insight and knowledge. [P4]

Computer Science Principles

Interface

10. Team Design

11. Team Programming
12. Variables

13. Variable Arithmetic
14. Numeric input

15. Interactive Apps with
Variables

16. Conditionals (to be
re-written)

17. If Statements (to be
re-written)

18. Nested If-statements
19. Iteration and Loops
20. Project: Quiz-App
21. What does the Internet
know about you?

Practice PT:
Writing about code

3.1.3 Explain the insight and knowledge gained from digitally processed data by using appropriate
visualizations, notations, and precise language. [P5]

3.2.1 Extract information from data to discover and explain connections, patterns, or trends. [P1]
3.3.1 Analyze how data representation, storage, security, and transmission of data involve
computational manipulation of information. [P4]

Algorithms

4.1.1 Develop an algorithm for implementation in a program. [P2]

4.1.2 Express an algorithm in a language. [P5]

Programming

5.1.1 Develop a program for creative expression, to satisfy personal curiosity, or to create new
knowledge. [P2]

5.1.2 Develop a correct program to solve problems. [P2]

5.1.3 Collaborate to develop a program. [P6]

5.2.1 Explain how programs implement algorithms. [P3]

5.3.1 Use abstraction to manage complexity in programs. [P3]

5.4.1 Evaluate the correctness of a program. [P4]

5.5.1 Employ appropriate mathematical and logical concepts in programming. [P1]

Global Impacts

7.1.2 Explain how people participate in a problem solving process that scales. [P4]

7.2.1 Explain how computing has impacted innovations in other fields. [P1]

7.4.1 Explain the connections between computing and economic, social, and cultural contexts. [P1]

Unit 4: Data

In this unit students continue programming and building apps, but now with a heavier focus on
data. Being able to extract knowledge from data is an important aspect of CS Principles and
in this unit students will do that in a number of ways. Students will write programs that
generate data to model or simulate a scenario they wish to investigate. Students will process
large lists of data imported from other sources and also pull data from live data APlIs.
Students will also more fully use App Lab’s cloud data storage capabilities to create
databases to use with their own apps.

The unit begins with students designing and running monte carlo-type experiments to
investigate the answer to data-driven questions that can be simulated on the computer with
many trials. Students then write programs that process large lists of data to perform simple
searches or aggregations. The unit concludes with some big data investigations that
encourages students to query a remote API that can return data and artifacts they can use in

their apps.

Lessons

CSP Framework Learning Objectives Addressed
(addressed explicitly or implicitly through practice)

Utility of Random numbers

Creativity
1.1.1 Apply a creative development process when creating computational artifacts. [P2]
1.2.1 Create a computational artifact for creative expression. [P2]

Computer Science Principles

290N

11.

12.

13.

14.

15.

16.

17.

A coin flipping experiment
Construct your own
experiment

Project: Run your
experiment

Processing Lists and what
“Big Data” means

Process a small list
Manipulate items in a list
Investigate image data
Simple image filters
Practice PT: Make your own
image filter

Storing user data in a
database

Retrieving data from your
database

The risks of storing personal
data

Practice PT: Make an app
that uses data from a
database

Experiments with big data
Programming against an api
(wolfram)

Extracting knowledge from
data

1.2.2 Create a computational artifact using computing tools and techniques to solve a problem.
[P2]

1.2.4 Collaborate in the creation of computational artifacts. [P6]

1.2.5 Analyze the correctness, usability, functionality, and suitability of computational artifacts.
[P4]

1.3.1 Use computing tools and techniques for creative expression. [P2]

Abstraction

2.2.3 Identify multiple levels of abstractions that are used when writing programs. [P3]

2.3.1 Use models and simulations to represent phenomena. [P3]

2.3.2 Use models and simulations to formulate, refine, and test hypotheses. [P3]

Data

3.1.1 Use computers to process information, find patterns, and test hypotheses about digitally
processed information to gain insight and knowledge. [P4]

3.1.2 Collaborate when processing information to gain insight and knowledge. [P6]

3.1.3 Explain the insight and knowledge gained from digitally processed data by using
appropriate visualizations, notations, and precise language. [P5]

3.2.1 Extract information from data to discover and explain connections, patterns, or trends.
[P1]

3.3.1 Analyze how data representation, storage, security, and transmission of data involve
computational manipulation of information. [P4]

Algorithms

4.1.1 Develop an algorithm for implementation in a program. [P2]

4.1.2 Express an algorithm in a language. [P5]

4.2.1 Explain the difference between algorithms that run in a reasonable time and those that do
not run in a reasonable time. [P1]

4.2.4 Evaluate algorithms analytically and empirically for efficiency, correctness, and clarity.
[P4]

Programming

5.1.1 Develop a program for creative expression, to satisfy personal curiosity, or to create new
knowledge. [P2]

5.1.2 Develop a correct program to solve problems. [P2]

5.1.3 Collaborate to develop a program. [P6]

5.2.1 Explain how programs implement algorithms. [P3]

5.3.1 Use abstraction to manage complexity in programs. [P3]

5.4.1 Evaluate the correctness of a program. [P4]

5.5.1 Employ appropriate mathematical and logical concepts in programming. [P1]

Internet

6.3.1 Identify existing cybersecurity concerns and potential options to address these issues with
the Internet and the systems built on it. [P1]

Global Impacts

7.2.1 Explain how computing has impacted innovations in other fields. [P1]

7.3.1 Analyze the beneficial and harmful effects of computing. [P4]

7.4.1 Explain the connections between computing and economic, social, and cultural contexts.

P1]

Computer Science Principles

Unit 5 - Performance Tasks

This unit is primarily set aside to ensure that students have enough time in class to work on
and complete their performance tasks for submission to the college board. There are a few
guided activities for teachers to run that will help students get organized and ensure they have
reasonable project plans that can be achieved in the time allotted.

Lessons: TBD

10

